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Is there a single principle by which neural operations can account for perception,
cognition,  action,  and  even  consciousness?  A  strong  candidate  is  now taking
shape in the form of “predictive processing”. On this theory, brains engage in pre-
dictive inference on the causes of sensory inputs by continuous minimization of
prediction errors or informational “free energy”. Predictive processing can account,
supposedly, not only for perception, but also for action and for the essential con-
tribution of the body and environment in structuring sensorimotor interactions. In
this paper I draw together some recent developments within predictive processing
that involve predictive modelling of internal physiological states (interoceptive in-
ference), and integration with “enactive” and “embodied” approaches to cognitive
science (predictive perception of sensorimotor contingencies). The upshot is a de-
velopment of predictive processing that originates, not in Helmholtzian percep-
tion-as-inference, but rather in 20th-century cybernetic principles that emphasized
homeostasis and predictive control. This way of thinking leads to (i) a new view of
emotion as active interoceptive inference; (ii) a common predictive framework link-
ing experiences of body ownership,  emotion,  and exteroceptive perception;  (iii)
distinct interpretations of active inference as involving disruptive and disambigu-
atory—not just confirmatory—actions to test perceptual hypotheses; (iv) a neuro-
cognitive operationalization of the “mastery of sensorimotor contingencies” (where
sensorimotor contingencies reflect the rules governing sensory changes produced
by various actions); and (v) an account of the sense of subjective reality of percep-
tual contents (“perceptual presence”) in terms of the extent to which predictive
models encode potential sensorimotor relations (this being “counterfactual rich-
ness”). This is rich and varied territory, and surveying its landmarks emphasizes
the need for experimental tests of its key contributions.
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1 Introduction

An increasingly popular theory in cognitive sci-
ence claims that brains are essentially predic-
tion  machines  (Hohwy 2013).  The  theory  is
variously known as the Bayesian brain (Knill &
Pouget 2004;  Pouget et  al. 2013),  predictive
processing (Clark 2013;  Clark this collection),
and the predictive mind (Hohwy 2013;  Hohwy
this collection), among others; here we use the
term PP (predictive processing).  (See  Table 1
for a glossary of technical terms.) At its most
fundamental, PP says that perception is the res-

ult of the brain inferring the most likely causes
of its sensory inputs by minimizing the differ-
ence between actual sensory signals and the sig-
nals expected on the basis of continuously up-
dated predictive models. Arguably, PP provides
the most  complete framework to date for  ex-
plaining  perception,  cognition,  and  action  in
terms of fundamental theoretical principles and
neurocognitive architectures. In this paper I de-
scribe a version of PP that is distinguished by
(i) an emphasis on predictive modelling of in-
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ternal physiological states and (ii) engagement
with alternative frameworks under the banner
of “enactive” and “embodied” cognitive science
(Varela et al. 1993).

I  first  identify an unusual  starting point
for PP, not in Helmholtzian perception-as-infer-
ence,  but  in  the  mid  20th-century  cybernetic
theories associated with  W. Ross Ashby (1952,
1956; Conant & Ashby 1970). Linking these ori-
gins  to their  modern expression  in  Karl Fris-
ton’s “free energy principle” (2010), perception
emerges  as  a  consequence of  a  more  funda-
mental  imperative  towards  homeostasis  and
control, and not as a process designed to furnish
a detailed inner “world model” suitable for cog-
nition and action planning. The ensuing view of
PP, while still  fluently accounting for (extero-
ceptive) perception, turns out to be more natur-
ally applicable to the predictive perception of
internal bodily states, instantiating a process of
interoceptive inference (Seth 2013;  Seth et  al.
2011). This concept provides a natural way of
thinking of the neural substrates of emotional
and  mood  experiences,  and  also  describes  a
common mechanism by which interoceptive and
exteroceptive  signals  can  be  integrated  to
provide a unified experience of body ownership
and  conscious  selfhood  (Blanke &  Metzinger
2009; Limanowski & Blankenburg 2013).

The focus on embodiment leads to distinct
interpretations of active inference, which in gen-
eral refers to the selective sampling of sensory
signals so as to improve perceptual predictions.
The simplest interpretation of active inference is
the  changing  of  sensory  data  (via  selective
sampling)  to  conform  to  current  predictions
(Friston et al. 2010). However, by analogy with
hypothesis  testing  in  science,  active  inference
can  also  involve  seeking  evidence  that  goes
against current predictions, or that  disambigu-
ates multiple competing hypotheses. A nice ex-
ample of the latter comes from self-modelling in
evolutionary robotics, where multiple competing
self-models are used to specify actions that are
most likely to provide disambiguatory sensory
evidence  (Bongard et  al. 2006).  I  will  spend
more  time  on  this  example  later.  Crucially,
these different senses of active inference rest on
the  capacity  of  predictive  models  to  encode

counterfactual relations  linking  potential  (but
not necessarily executed) actions to their expec-
ted sensory consequences (Friston et al. 2012;
Seth 2014b). It also implies the involvement of
model  comparison and selection—not just  the
optimization  of  parameters  assuming  a  single
model. These points represent significant devel-
opments in the basic infrastructure of PP.

The notion of counterfactual predictions
connects PP with what at first glance seems
to be its natural opponent: “enactive” theories
of perception and cognition that explicitly re-
ject internal models or representations (Clark
this collection; Hutto & Myin 2013; Thompson
&  Varela 2001).  Central  to  the  enactive  ap-
proach are notions of “sensorimotor contingen-
cies”  and  their  “mastery”  (O’Regan &  Noë
2001), where a sensorimotor contingency refers
to a rule governing how sensory signals change
in response to action. On this approach, the
perceptual experience of (for example) redness
is given by an implicit knowledge (mastery) of
the way red things behave given certain pat-
terns of sensorimotor activity. This mastery of
sensorimotor contingencies is also said to un-
derpin  perceptual  presence:  the sense of  sub-
jective  reality  of  the  contents  of  perception
(Noë 2006). From the perspective of PP, mas-
tery  of  a  sensorimotor  contingency  corres-
ponds  to  the  learning  of  a  counterfactually-
equipped predictive  model  connecting  poten-
tial actions to expected sensory consequences.
The  resulting  theory  of  PPSMC (Predictive
Perception  of  SensoriMotor  Contingencies),
Seth 2014b) provides a much needed reconcili-
ation  of  enactive  and  predictive  theories  of
perception and action. It also provides a solu-
tion  to  the  challenge  of  perceptual  presence
within the setting of PP: perceptual presence
obtains when the underlying predictive models
are  counterfactually rich,  in the sense of  en-
coding a rich repertoire of potential (but not
necessarily  executed)  sensorimotor  relations.
This  approach  also  helps  explain  instances
where  perceptual  presence  seems to be  lack-
ing, such as in synaesthesia. 

This is both a conceptual and theoretical
paper. Space limitations preclude any signific-
ant treatment of the relevant experimental lit-
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erature.  However,  even  an  exhaustive  treat-
ment would reveal that this literature so far
provides  only  circumstantial  support  for  the
basics of PP, let alone for the extensions de-
scribed here. Yet an advantage of PP theories
is that they are grounded in concrete compu-
tational processes and neurocognitive architec-
tures,  giving  us  confidence  that  informative
experimental tests can be devised. Implement-
ing such an experimental agenda stands as a
critical challenge for the future.

2 The predictive brain and its cybernetic 
origins

2.1 Predictive processing: The basics

PP starts with the assumption that in order to
support adaptive responses, the brain must dis-
cover information about the external “hidden”
causes of sensory signals. It lacks any direct ac-
cess to these causes, and can only use informa-
tion found in the flux of sensory signals them-
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Figure 1: A. Schemas of hierarchical predictive coding across three cortical regions; the lowest on the left (R1) and
the highest on the right (R3). Bottom-up projections (red) originate from “error units” (orange) in superficial cortical
layers and terminate on “state units” (light blue) in the deep (infragranular) layers of their targets; while top-down pro -
jections (dark blue) convey predictions originating in deep layers and project to the superficial layers of their targets.
Prediction errors are associated with precisions, which determine the relative influence of bottom-up and top-down sig-
nal flow via precision weighting (dashed lines). B. The influence of precisions on Bayesian inference and predictive cod-
ing. The curves show probability distributions over the value of a sensory signal (x-axis). On the left, high precision-
weighting of sensory signals (red) enhances their influence on the posterior (green) and expectation (dotted line) as
compared to the prior (blue). On the right, low sensory precision weighting has the opposite effect. Figure adapted
from Seth (2013).
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selves. According to PP, brains meet this chal-
lenge by attempting to predict sensory inputs
on the basis of their  own emerging models of
the causes of these inputs, with prediction er-
rors being used to update these models so as to
minimize discrepancies. The idea is that a brain
operating this way will come to encode (in the
form of predictive or generative models) a rich
body of information about the sources of signals
by which it is regularly perturbed (Clark 2013).

Applied  to  cortical  hierarchies,  PP over-
turns  classical  notions  of  perception  that  de-
scribe a largely “bottom-up” process of evidence
accumulation or feature detection. Instead, PP
proposes that perceptual content is determined
by top-down predictive  signals  emerging  from
multi-layered  and hierarchically-organized  gen-
erative models of the causes of sensory signals
(Lee & Mumford 2003). These models are con-
tinually  refined  by mismatches  (prediction er-
rors) between predicted signals and actual sig-
nals across hierarchical levels, which iteratively
update predictive models via approximations to
Bayesian inference (see  Figure 1). This means
that the brain can induce accurate generative
models of environmental hidden causes by oper-
ating only on signals to which it has direct ac-
cess:  predictions and  prediction errors.  It  also
means that even low-level perceptual content is
determined via cascades of predictions flowing
from very general abstract expectations, which
constrain successively more fine-grained predic-
tions.

Two further aspects of PP need to be em-
phasized from the outset. First, sensory predic-
tion errors can be minimized either “passively”,
by changing predictive models to fit incoming
data  (perceptual  inference),  or  “actively”,  by
performing actions  to  confirm or  test  sensory
predictions  (active  inference).  In  most  cases
these processes are assumed to unfold continu-
ously  and  simultaneously,  underlining  a  deep
continuity between perception and action (Fris-
ton et al. 2010; Verschure et al. 2003). This pro-
cess of active inference will play a key role in
much of what follows. Second, predictions and
prediction errors in a Bayesian framework have
associated  precisions (inverse variances,  Figure
1). The precision of a prediction error is an in-

dicator of its reliability, and hence can be used
to determine its influence in updating top-down
predictive models. Precisions, like mean values,
are not given but must be inferred on the basis
of top-down models and incoming data; so PP
requires  that  agents  have  expectations  about
precisions that are themselves updated as new
data arrive (and new precisions can be estim-
ated). Precision expectations can therefore bal-
ance the influence of  different prediction-error
sources  on the updating of  predictive models.
And  if  prediction  errors  have  low  (expected)
precision, predictive models may overwhelm er-
ror signals (hallucination) or elicit actions that
confirm sensory predictions (active inference). 

A picture emerges in which cortical  net-
works engage in recurrent interactions whereby
bottom-up prediction errors are continuously re-
conciled with top-down predictions at multiple
hierarchical levels—a process modulated at all
times  by  precision  weighting.  The  result  is  a
brain that not only encodes information about
the  sources  of  signals  that  impinge  upon  its
sensory surfaces, but that also encodes informa-
tion  about  how its  own actions  interact  with
these sources in specifying sensory signals. Per-
ception involves updating the parameters of the
model to fit the data;  action involves changing
sensory data to fit (or test) the model; and at-
tention corresponds to optimizing model updat-
ing by giving preference to sensory data that
are expected to carry more information, which
is called precision weighting (Hohwy 2013). This
view  of  the  brain  is  shamelessly  model-based
and representational (though with a finessed no-
tion of representation),  yet it  also deeply em-
beds the close coupling of perception and action
and, as we will see, the importance of the body
in the mediation of this interaction.

2.2 Predictive processing and the free 
energy principle

PP can be considered a special case of the free
energy principle, according to which perceptual
inference and action emerge as a consequence of
a  more  fundamental  imperative  towards  the
avoidance of “surprising” events (Friston 2005,
2009,  2010).  On the free energy principle,  or-
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ganisms – by dint of their continued survival—
must minimize the long-run average surprise of
sensory  states,  since  surprising  sensory  states
are likely to reflect conditions incompatible with
continued existence (think of a fish out of wa-
ter). “Surprise” is not used here in the psycholo-
gical  sense,  but  in  an  information-theoretic
sense—as  the  negative  log  probability  of  an
event’s occurrence (roughly, the unlikeliness of
the occurrence of an event).

The  connection  with  PP  arises  because
agents  cannot  directly  evaluate  the  (informa-
tion-theoretic)  surprise  associated  with  an
event,  since  this  would  require—impossibly—
the  agent  to  average  over  all  possible  occur-
rences of the event in all possible situations. In-
stead, the agent can only maintain a lower limit
on  surprise  by  minimizing  the  difference
between actual sensory signals and those signals
predicted according to a generative or predictive
model. This difference is free energy, which, un-
der fairly general assumptions, is the long-run
sum of prediction error.

An  attractive  feature  of  the  free  energy
principle  is  that  it  brings  to  the  table  a  rich
mathematical framework that shows how PP can
work in practice. Formally, PP depends on estab-
lished principles of Bayesian inference and model
specification, whereby the most likely causes of
observed data (posterior) are estimated based on
optimally combining  prior expectations of  these
causes with observed data, by using a (generative,
predictive) model of the data that would be ob-
served given a particular set of causes (likelihood).
(See  Figure 1 for an example of priors and pos-
teriors.) In practice, because optimal Bayesian in-
ference is usually intractable, a variety of approx-
imate methods can be applied (Hinton & Dayan
1996;  Neal & Hinton 1998). Friston’s framework
appeals  to  previously  worked-out  “variational”
methods, which take advantage of certain approx-
imations (e.g., Gaussianity, independence of tem-
poral  scales)—thus  allowing  a  potentially  neat
mapping onto neurobiological quantities (Friston
et al. 2006).1 
1 Some challenging questions surface here as to whether prediction

errors are used to update priors, which corresponds to standard
Bayesian inference, or whether they are used to update the un-
derlying generative/predictive model, which corresponds to learn-
ing. 

The free energy principle also emphasizes
action as a means of prediction error minimiza-
tion, this being active inference. In general, act-
ive inference involves the selective sampling of
sensory signals so as to minimize uncertainty in
perceptual hypotheses (minimizing the entropy
of the posterior). In one sense this means that
actions are selected to provide evidence compat-
ible with current perceptual predictions. This is
the most standard interpretation of the concept,
since it corresponds most directly to minimiza-
tion of prediction error (Friston 2009). However,
as we will see, actions can also be selected on
the basis of an attempt to find evidence going
against current hypotheses, and/or to efficiently
disambiguate  between  competing  hypotheses.
These finessed senses of active inference repres-
ent developments of the free energy framework.
Importantly, action itself can be thought of as
being  brought  about  by  the  minimization  of
proprioceptive prediction errors via the engage-
ment of classical reflex arcs (Adams et al. 2013;
Friston et  al. 2010).  This  requires  transiently
low precision-weighting of these errors (or else
predictions would simply be updated instead),
which is compatible with evidence showing sens-
ory  attenuation  during  self-generated  move-
ments (Brown et al. 2013). 

A more controversial aspect of the free en-
ergy principle is its claimed generality (Hohwy
this collection). At least as described by Friston,
it  claims to account for  adaptation at almost
any granularity of time and space, from macro-
scopic trends in evolution, through development
and maturation, to signalling in neuronal hier-
archies  (Friston 2010).  However,  in  some  of
these interpretations reliance on predictive mod-
elling is only implicit; for example the body of a
fish can be considered to be an implicit model
of the fluid dynamics and other affordances of
its watery environment (see section  2.3). I am
not  concerned  here  with  these  broader  inter-
pretations,  but  will  focus  on  those  cases  in
which biological (neural) mechanisms plausibly
implement explicit predictive inference via ap-
proximations  to  Bayesian  computations—
namely,  the  Bayesian  brain  (Knill &  Pouget
2004; Pouget et al. 2013). Here, the free energy
principle has potentially the greatest explanat-

Seth, A. K. (2015). The Cybernetic Bayesian Brain - From Interoceptive Inference to Sensorimotor Contingencies.
In T. Metzinger & J. M. Windt (Eds). Open MIND: 35(T). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570108 6 | 24

http://www.open-mind.net/
http://dx.doi.org/10.15502/9783958570108
http://www.open-mind.net/papers/@@chapters?nr=35


www.open-mind.net

ory power, especially given the convergence of
empirical evidence (see  Clark 2013 and  Hohwy
2013 for reviews) and computational modelling
showing how cortical microcircuits might imple-
ment approximate Bayesian inference (Bastos et
al. 2012).

2.3 Predictive processing, free energy, 
and cybernetics

Typically, the origins of PP are traced to the
work of the 19th Century physiologist Hermann
von Helmholtz, who first formalized the idea of
perception as inference. However, the Helmholt-

zian view is rather passive, inasmuch as there is
little discussion of active inference or behaviour.
The close coupling of perception and action em-
phasized in the free energy principle points in-
stead  to  a  deep  connection  between  PP  and
mid-twentieth-century cybernetics. This is most
obvious in the works of W. Ross Ashby (Ashby
1952;  1956;  Conant & Ashby 1970) but is also
evident more generally (Dupuy 2009;  Pickering
2010). Importantly,  cybernetics  adopted as its
central focus the prediction and control of beha-
viour in so-called teleological or purposeful ma-
chines.2 More  precisely,  cybernetic  theorists
were (are) interested in systems that appear to
have goals (i.e., teleological) and that particip-
ate in circular causal chains (i.e., involving feed-
back) coupling goal-directed sensation and ac-
tion. 

Two key insights from the first wave of cy-
bernetics  usefully  anticipate  the  core  develop-
ments of PP within cognitive science. These are
both associated with Ashby, a key figure in the
movement  and  often  considered  its  leader,  at
least outside the USA (Figure 2). 

The first  insight consists in an emphasis
on  the  homeostasis  of  internal  essential  vari-
ables,  which,  in  physiological  settings,  corres-
pond  to  quantities  like  blood  pressure,  heart
rate, blood sugar levels, and the like. In Ashby’s
framework, when essential variables move bey-
ond specific viability limits, adaptive processes
are  triggered  that  re-parameterize  the  system
until  it  reaches  a  new  equilibrium  in  which
homeostasis is restored (Ashby 1952). Such sys-
tems  are,  in  Ashby’s  terminology,  ultrastable,
since they embody (at least) two levels of feed-
back: a first-order feedback that homeostatically
regulates essential variables (like a thermostat)
and a second-order feedback that allostatically3

re-organises  a  system’s  input–output  relations
when  first-order  feedback  fails,  until  a  new
homeostatic regime is attained. In the most ba-
sic  case,  as  implemented  in  Ashby’s  famous
“homeostat” (Figure 2), this second-order feed-
back simply involves random changes to system
2 This underlines the close links between cybernetics and behaviour-

ism. Perhaps this explains why cybernetics was so reluctant to bring
phenomenology  into  its  remit,  an  exclusion  which,  looking  back,
seems like a missed opportunity.

3 Allostasis: the process of achieving homeostasis.
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Figure  2:  A. W. Ross Ashby, British psychiatrist and
pioneer of cybernetics (1903–1972). B. A schematic of ul-
trastability, based on Ashby’s notebooks. The system  R
homeostatically  maintains  its  essential  variables  (EVs)
within viability limits via first-order feedback with the
environment  E.  When first-order feedback fails, so that
EVs run out-of-bounds, second order “ultrastable” feed-
back is triggered so that S (an internal controller, poten-
tially model-based) changes the parameters of R govern-
ing the first-order feedback. S continually changes R until
homeostatic relations are regained, leaving the EVs again
within  bounds.  C.  Ashby’s  “homeostat”,  consisting  of
four  interconnected  ultrastable  systems,  forming  a  so-
called “multistable” system. D. One ultrastable unit from
the homeostat. Each unit had a trough of water with an
electric field gradient and a metal needle. Instability was
represented by the non-central needle positions, which on
occurring would alter the resistances connecting the units
via  discharge  through  capacitors.  For  more  details  see
Ashby (1952) and Pickering (2010).
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parameters until a new stable regime is reached.
The importance of this insight for PP is that it
locates the function of biological and cognitive
processes in generalizing homeostasis to ensure
that internal  essential  variables  remain within
expected ranges. 

Another  way  to  summarize  the  funda-
mental cybernetic principle is to say that adapt-
ive systems ensure their continued existence by
successfully  responding  to  environmental  per-
turbations so as to maintain their internal or-
ganization.  This  leads  to  the  second  insight,
evident in Ashby’s law of requisite variety. This
states that a successful control system must be
capable of entering at least as many states as
the system being controlled: “only variety can
force down variety” (Ashby 1956). This induces
a  functional  boundary between controller  and
environment  and  implies  a  minimum level  of
complexity for a successful controller, which is
determined by the causal complexity of the en-
vironmental states that constitute potential per-
turbations to a system’s essential variables. This
view was refined some years later, in a 1970 pa-
per written with Roger Conant entitled “Every
good regulator of a system must be a model of
that system” (Conant & Ashby 1970). This pa-
per builds on the law of requisite variety by ar-
guing (and attempting to formally show) that
the nature of a controller capable of suppressing
perturbations  imposed  by  an  external  system
(e.g.,  the  world)  must  instantiate  a  model  of
that system. This  provides a  clear  connection
with the free energy principle, which proposes
that adaptive systems minimize a limit on free
energy (long-run average surprise) by inducing
and refining a generative model of the causes of
sensory signals.  It also moves beyond Ashby’s
homeostat  by implying that  model-based  con-
trollers  can  engage  in  more  successful  multi-
level feedback than is possible by random vari-
ation of higher-order parameters.

Putting these insights  together  provides
a distinctive way of seeing the relevance of PP
to cognition and biological adaptation. It can
be summarized as follows. The purpose of cog-
nition (including perception and action) is to
maintain the homeostasis of essential variables
and  of  internal  organization  (ultrastability).

This implies the existence of a control mech-
anism with sufficient complexity to respond to
(i.e., suppress) the variety of perturbations it
encounters (law of requisite variety). Further,
this structure must instantiate a model of the
system to be controlled (good regulator  the-
orem),  where  the  system  includes  both  the
body and the environment (and their interac-
tions). As Ashby himself tells us “[t]he whole
function of  the brain can be summed up in:
error correction” (quoted in Clark 2013, p. 1).
Put  this  way,  perception  emerges  as  a  con-
sequence of a more fundamental imperative to-
wards organizational homeostasis, and not as
a  stage  in  some  process  of  internal  world-
model  construction.  This  view,  while  high-
lighting different origins, closely parallels the
assumptions  of  the  free  energy  principle  in
proposing  a  primary  imperative  towards  the
continued  survival  of  the  organism  (Friston
2010).

It may be surprising to consider the leg-
acy  of  cybernetics  in  this  light.  This  is  be-
cause many previous discussions of this legacy
focus on examples which show that complex,
apparently goal-directed behaviour can emerge
from  simple  mechanisms  interacting  with
structured  bodies  and  environments (Beer
2003;  Braitenberg 1984). On this more stand-
ard development, cybernetics challenges rather
than asserts the need for internal models and
representations: it is often taken to justify slo-
gans  of  the  sort  “the  world  is  its  own  best
model” (Brooks 1991). In fact, cybernetics is
agnostic with respect to the need for deploy-
ment of explicit internally-specified predictive
models.  If  environmental  circumstances  are
reasonably stable, and mappings between per-
turbations  and  (homeostatic)  responses  reas-
onably  straightforward,  then  the  good  regu-
lator  theorem can be  satisfied  by controllers
that only implicitly model their environments.
This is the case, for instance, in the Watt gov-
ernor: a device that is able exquisitely to con-
trol the output of (for instance) a steam en-
gine,  in  virtue  of  its  mechanism,  and  not
through the deployment of explicit predictive
models  or  representations  (see  Figure  3 and
Van Gelder 1995; note that the governor can
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be described as an implicit model since it has
variables – e.g., eccentricity of the metal balls
from the central column – which map onto en-
vironmental  variables  that  affect  the homeo-
static target – engine output). However, where
there  exist  many-to-many  mappings  between
sensory  states  and  their  probable  causes,  as
may be the case more often than not, it will
pay to engage explicit inferential processes in
order to extract the most probable causes of
sensory states, insofar as these causes threaten
the homeostasis of essential variables.

Figure  3:  The Watt  governor.  This  system,  a  central
contributor to the industrial revolution, enabled precise
control over the output of (for example) steam engines.
As the speed of the engine increases, power is supplied to
the governor (A) by a belt or chain, causing it to rotate
more rapidly so that the metal balls have more kinetic
energy. This causes the balls to rise (B), which closes the
throttle  valve  (C),  thereby  reducing  the  steam  flow,
which  in  turn reduces  engine speed (D).  The opposite
happens  when the engine  speed decreases,  so  that  the
governor maintains engine speed at a precise equilibrium.

In  summary,  rather  than  seeing  PP  as
originating solely in the Helmholtzian notion
of  “perception  as inference”,  it  is  fruitful  to
see it also as part of a process of model-based
predictive  control entailed  by  a  fundamental
imperative towards internal homeostasis. This
shift  in  perspective  reveals  a  distinctive
agenda for PP in cognitive science, to which I
shall now turn.

3 Interoceptive inference, emotion, and 
predictive selfhood

3.1 Interoceptive inference and emotion

Considering the cybernetic roots of PP, together
with the free energy principle, leads to a poten-
tially counterintuitive idea. This is that PP may
apply more naturally to interoception (the sense
of  the  internal  physiological  condition  of  the
body) than to  exteroception (the classic senses,
which  carry  signals  that  originate  in  the  ex-
ternal environment). This is because for an or-
ganism it is more important to avoid encounter-
ing  unexpected  interoceptive  states  than  to
avoid  encountering  unexpected  exteroceptive
states.  A level  of  blood oxygenation or  blood
sugar  that  is  unexpected  is  likely  to  be  bad
news for an organism, whereas unexpected ex-
teroceptive sensations (like novel visual inputs)
are less likely to be harmful and may in some
cases be desirable, as organisms navigate a del-
icate balance between exploration and exploita-
tion  (Seth 2014a),  testing  current  perceptual
hypotheses through active inference (see section
5, below), all ultimately in the service of main-
taining organismic homeostasis.

Perhaps  because  of  its  roots  in  Helm-
holtz,  PP has  largely  been  developed in  the
setting of visual neuroscience (Rao & Ballard
1999), with a related but somewhat independ-
ent  line  in  motor  control  (Wolpert &
Ghahramani 2000).  Recently,  an  explicit  ap-
plication of PP to interoception has been de-
veloped  (Seth 2013;  Seth &  Critchley 2013;
Seth et al. 2011; see also Gu et al. 2013). On
this theory of interoceptive inference (or equi-
valently  interoceptive predictive coding), emo-
tional  states  (i.e.,  subjective  feeling  states)
arise from top-down predictive inference of the
causes  of  interoceptive  sensory  signals  (see
Figure 4).  In direct analogy to exteroceptive
PP,  emotional  content  is  constitutively  spe-
cified by the content of top-down interoceptive
predictions at a given time, marking a distinc-
tion with the well-studied impact of expecta-
tions on subsequent emotional states (see e.g.,
Ploghaus et al. 1999;  Ueda et al. 2003). Fur-
thermore,  interoceptive  prediction  errors  can
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be minimized by (i) updating predictive mod-
els  (perception,  corresponding  to  new  emo-
tional  contents);  (ii)  changing  interoceptive
signals  through  engaging  autonomic  reflexes
(autonomic control or active inference); or (iii)
performing behaviour  so as  to alter  external
conditions  that  impact  on  internal  homeo-
stasis (allostasis;  Gu &  Fitzgerald 2014;  Seth
et al. 2011).

Consider  an  example  in  which  blood
sugar levels (an essential variable) fall towards
or beyond viability thresholds, reaching unex-
pected and undesirable values (Gu & Fitzger-
ald 2014; Seth et al. 2011). Under interocept-
ive  inference,  the  following  responses  ensue.
First,  interoceptive  prediction  error  signals
update top-down expectations, leading to sub-

jective  experiences  of  hunger  or  thirst  (for
sugary  things).  Because  these  feeling  states
are themselves surprising (and non-viable) in
the long run, they signal prediction errors at
hierarchically-higher  levels,  where  predictive
models integrate multimodal interoceptive and
exteroceptive  signals.  These  models  instanti-
ate  predictions  of  temporal  sequences  of
matched  exteroceptive  and  interoceptive  in-
puts, which flow down through the hierarchy.
The resulting cascade of prediction errors can
then  be  resolved  either  through  autonomic
control,  in  order  to  metabolize  bodily  fat
stores (active inference), or through allostatic
actions  involving  the  external  environment
(i.e., finding and eating sugary things). 

The  sequencing  and  balance  of  these
events  is  governed  by  relative  precisions  and
their  expectations.  Initially,  interoceptive  pre-
diction  errors  have  high  precision  (weighting)
given  a  higher-level  expectation  of  stable
homeostasis.  Whether  the  resulting  high-level
prediction  error  engages  autonomic  control  or
allostatic behaviour (or both) depends on the
precision weighting of the corresponding predic-
tion errors. If food is readily available, consum-
matory actions lead to food intake (as described
earlier, these actions are generated by the resol-
ution  of  proprioceptive  prediction  errors).  If
not, autonomic reflexes initiate the metaboliza-
tion of bodily fat stores, perhaps alongside ap-
petitive behaviours that are predicted to lead to
the availability of food, conditioned on perform-
ing these behaviours.4

3.2 Implications of interoceptive inference

Several interesting implications arise when con-
sidering emotion as resulting from interoceptive
inference (Seth 2013). First, the theory general-
izes previous “two factor” theories of  emotion
that see emotional content as resulting from an
interaction between the perception of physiolo-
4 It is interesting to consider possible dysfunctions in this process.

For example, if high-level predictions about the persistence of low
blood sugar become abnormally strong (i.e., low blood sugar be-
comes  chronically  expected),  allostatic  food-seeking  behaviours
may not occur. This process, akin to the transition from hallucin -
ation to delusion in perceptual inference (Fletcher & Frith 2009),
may help understand eating disorders in terms of dysfunctional
signalling of satiety. 
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Figure 4: Inference and perception. Green arrows represent
exteroceptive predictions and predictions errors underpin-
ning perceptual content, such as the visual experience of a
tomato. Orange arrows represent proprioceptive predictions
(and prediction errors) underlying action and the experience
of body ownership. Blue arrows represent interoceptive pre-
dictions (and prediction errors) underlying emotion, mood,
and autonomic regulation. Hierarchically higher levels will
deploy multimodal and even amodal predictive models span-
ning these domains, which are capable of generating mul-
timodal predictions of afferent signals.
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gical  changes  (James 1894)  and “higher-level”
cognitive appraisal of the context within which
these changes occur (Schachter & Singer 1962).
Instead  of  distinguishing  “physiological”  and
“cognitive”  levels  of  description,  interoceptive
inference  sees  emotional  content  as  resulting
from the multi-layered prediction of interocept-
ive input spanning many levels of abstraction.
Thus,  interoceptive  inference  integrates  cogni-
tion and emotion within the powerful setting of
PP.

The theory also connects with influential
frameworks that link interoception with decision
making,  notably  the  “somatic  marker  hypo-
thesis”  proposed  by  Antonio Damasio (1994).
According to the somatic marker hypothesis, in-
tuitive decisions are shaped by interoceptive re-
sponses  (somatic  markers)  to  potential  out-
comes. This idea, when placed in the context of
interoceptive inference, corresponds to the guid-
ance  of  behavioural  (allostatic)  responses  to-
wards the resolution of interoceptive prediction
error  (Gu &  Fitzgerald 2014;  Seth 2014a).  It
follows  that  intuitive  decisions  should  be  af-
fected  by  the  degree  to  which  an  individual
maintains accurate predictive models of his or
her  own interoceptive  states;  see  Dunn et  al.
2010,  Sokol-Hessner et  al. 2014 for  evidence
along these lines.

There are also important implications for
disorders  of  emotion,  selfhood,  and decision-
making. For example, anxiety may result from
the chronic persistence of interoceptive predic-
tion  errors  that  resist  top-down  suppression
(Paulus &  Stein 2006). Dissociative disorders
like  alexithymia  (the  inability  to  describe
one’s  own  emotions),  and  depersonalization
and derealisation (the loss of sense of reality
of  the  self  and  world)  may also  result  from
dysfunctional interoceptive inference, perhaps
manifest in abnormally low interoceptive pre-
cision  expectations  (Seth 2013;  Seth et  al.
2011). In terms of decision-making, it may be
productive to think of  addiction as resulting
from dysfunctional  active  inference,  whereby
strong  interoceptive  priors  are  confirmed
through action, overriding higher-order or hy-
per-priors relating to homeostasis and organis-
mic integrity. It has even been suggested that

autism  spectrum  disorders  may  originate  in
aberrant encoding of the salience or precision
of  interoceptive prediction errors (Quattrocki
&  Friston 2014).  The reasoning  here  is  that
aberrant  salience  during  development  could
disrupt  the  assimilation  of  interoceptive  and
exteroceptive cues within generative models of
the “self”, which would impair a child’s ability
to properly assign salience to socially relevant
signals. 

3.3 The predictive embodied self

The  maintenance  of  physiological  homeostasis
solely  through  direct  autonomic  regulation  is
obviously limited: behavioural (allostatic) inter-
actions with the world are necessary if the or-
ganism  is  to  avoid  surprising  physiological
states in the long run. The ability to deploy ad-
aptive behavioural responses mandates the ori-
ginal Helmholtzian view of perception-as-infer-
ence, which has been the primary setting for the
development of PP so far. A critical but argu-
ably overlooked middle ground, which mediates
between  physiological  state  variables  and  the
external environment, is the body. On one hand,
the body is the material vehicle through which
behaviour is expressed, permitting allostatic in-
teractions to take place. On the other, the body
is itself an essential part of the organismic sys-
tem, the homeostatic integrity of which must be
maintained. In addition, the experience of own-
ing and identifying with a particular body is a
key component of being a conscious self (Apps
&  Tsakiris 2014;  Blanke &  Metzinger 2009;
Craig 2009;  Limanowski &  Blankenburg 2013;
Seth 2013).

It  is  tempting  to  ask  whether  common
predictive mechanisms could underlie not only
classical  exteroceptive  perception  (like  vision)
and interoception (see above), but also their in-
tegration  in  supporting  conscious  and  uncon-
scious representations of the body and self (Seth
2013). The significance of this question is un-
derlined by realising that just as the brain has
no direct access to causal structures in the ex-
ternal environment, it also lacks direct access to
its own body. That is, given that the brain is in
the business of  inferring the causal sources of
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sensory signals,  a key challenge emerges when
distinguishing those signals that pertain to the
body  from those  that  originate  from the  ex-
ternal  environment.  A clue  to  how this  chal-
lenge is met is  that the physical body, unlike
the external environment, constantly generates
and receives internal input via its interoceptive
and  proprioceptive  systems  (Limanowski &
Blankenburg 2013;  Metzinger 2003). This sug-
gests that the experienced body (and self) de-
pends on the brain’s best guess of the causes of
those  sensory  signals  most  likely  to  be  “me”
(Apps &  Tsakiris 2014),  across  interoceptive,
proprioceptive, and exteroceptive domains (Fig-
ure 4).

There is now considerable evidence that
the  experience  of  body  ownership is  highly
plastic and depends on the multisensory integ-
ration  of  body-related  signals  (Apps &

Tsakiris 2014; Blanke & Metzinger 2009). One
classic  example  is  the  rubber  hand  illusion,
where the stroking of an artificial  hand syn-
chronously  with  a  participant’s  real  hand,
while visual attention is focused on the artifi-
cial hand, leads to the experience that the ar-
tificial  hand  is  somehow  part  of  the  body
(Botvinick &  Cohen 1998). According to cur-
rent  multisensory  integration  models,  this
change in the experience of body ownership is
due  to  correlation  between  vision  and  touch
overriding  conflicting  proprioceptive  inputs
(Makin et al. 2008). Through the lens of PP,
this implies that prediction errors induced by
multisensory  conflicts  will  over  time  update
self-related  priors  (Apps &  Tsakiris 2014),
with  different  signal  sources  (vision,  touch,
proprioception)  each  precision-weighted  ac-
cording to their expected reliability, and all in
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Figure 5: The interaction of interoceptive and exteroceptive signals in shaping the experience of body ownership. A. Set-up
for applying cardio-visual feedback in the rubber hand illusion. A Microsoft Kinect obtains a real-time 3D model of a sub-
ject’s left hand. This is re-projected into the subject’s visual field using a head-mounted display and augmented reality (AR)
software. B. The colour of the virtual hand is modulated by the subject’s heart-beat. C. A similar set-up for the full-body il-
lusion whereby a visual image of a subject’s body is surrounded by a halo pulsing either in time or out of time with the
heartbeat. Panels A and B are adapted from Suzuki et al. (2013); panel C is adapted from Aspell et al. (2013).
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the  setting  of  strong  prior  expectations  for
correlated input.5

While  the  potential  for  exteroceptive
multisensory integration to modulate the exper-
ience  of  body ownership  has  been  extensively
explored both for the ownership of body parts
and for the experience of ownership of the body
as a whole (for  reviews,  see  Apps &  Tsakiris
2014;  Blanke &  Metzinger 2009), only recently
has attention been paid to interactions between
interoceptive  and  exteroceptive  signals.  Initial
evidence in this line of investigation was indir-
ect,  for  example  showing  correlation  between
susceptibility  to the rubber hand illusion  and
individual differences in the ability to perceive
interoceptive signals (“interoceptive sensitivity”,
typically indexed by heartbeat detection tasks;
Tsakiris et  al. 2011).  Other  relevant  studies
have shown that body ownership illusions lead
to temperature reductions in the corresponding
body  parts,  perhaps  reflecting  altered  active
autonomic inference (Moseley et  al. 2008;  Sa-
lomon et al. 2013).

Emerging  evidence  now points  more  dir-
ectly towards the predictive multisensory integ-
ration of interoceptive and exteroceptive signals
in  shaping  the  experience  of  body ownership.
Two recent studies have taken advantage of so-
called “cardio-visual synchrony” where virtual-
reality representations of body parts (Suzuki et
al. 2013) or the whole body (Aspell et al. 2013)
are  modulated  by  simultaneously  recorded
heartbeat  signals,  with  the  modulation  either
in-time or out-of-time with the actual heartbeat
(Figure 5). These data suggest that statistical
correlations between interoceptive (e.g., cardiac)
and exteroceptive (e.g., visual) signals can lead
to the updating of predictive models of self-re-
lated  signals  through  (hierarchical)  minimiza-
tion  of  prediction  error,  just  as  happens  for
purely  exteroceptive  multisensory  conflicts  in
the classic rubber hand illusion.

While these studies underline the plausib-
ility of common predictive mechanisms underly-
ing  emotion,  selfhood,  and  perception,  many
open questions nevertheless remain. A key chal-
lenge is to detail the underlying neural opera-
5 Interestingly the expectation of perceptual correlations seems to be

sufficient for inducing the rubber hand illusion (Ferri et al. 2013). 

tions. Though a detailed analysis is beyond the
scope of the present paper, it is worth noting
that attention is increasingly focused on the in-
sular cortex (especially its anterior parts) as a
potential  source  of  interoceptive  predictions,
and also as a comparator registering interocept-
ive  prediction  errors.  The  anterior  insula  has
long been considered a major cortical locus for
the integration of interoceptive and exterocept-
ive signals (Craig 2003; Singer et al. 2009); it is
strongly  implicated  in  interoceptive  sensitivity
(Critchley et al. 2004); it is sensitive to intero-
ceptive prediction errors—at least in some con-
texts (Paulus & Stein 2006); and it has a high
density  of  so-called  “von  Economo”  neurons,6
which have been frequently though circumstan-
tially  associated  with  consciousness  and  self-
hood  (Critchley &  Seth 2012;  Evrard et  al.
2012). 

3.4 Active inference, self-modeling, and 
evolutionary robotics

What role  might  active inference play in pre-
dictive self-modelling? Autonomic changes dur-
ing illusions of body ownership (see above) are
consistent  with active  inference;  however  they
do  not  speak  directly  to  its  function.  In  the
classic  rubber  hand  illusion,  hand  or  finger
movements can be considered active inferential
tests of self-related hypotheses. If these move-
ments are not reflected in the “rubber hand”,
the  illusion  is  destroyed—presumably  because
predicted visual signals are not confirmed (Apps
&  Tsakiris 2014). However, if hand movements
are  mapped  to  a  virtual  “rubber  hand”—
through  clever  use  of  virtual  and  augmented
reality—the illusion is in fact strengthened, pre-
sumably because the multisensory correlation of
peri-hand visual and proprioceptive signals con-
stitutes a more stringent test of the perceptual
hypothesis of ownership of the virtual hand (Su-
zuki et al. 2013). This introduces the idea that
active inference is not simply about confirming
sensory  predictions  but  also  involves  seeking
“disruptive” actions that are most informative
with  respect  to  testing  current  predictions,
6 These are long-range projection neurons found selectively in hominid

primates and certain other species.
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and/or at disambiguating competing predictions
(Gregory 1980).  A  nice  example  of  how  this
happens in practice comes from evolutionary ro-
botics7—which is obviously a very different liter-
ature,  though  one  that  inherits  directly  from
the cybernetic tradition. 

In  a  seminal  2006  study,  Josh  Bongard
and colleagues described a four-legged “starfish”
robot that engaged in a process much like active
inference in order to model its own morphology
so as to be able to control its movement and at-
tain  simple  behavioural  goals  (Bongard et  al.
2006).  While  there  are  important  differences
between  evolutionary  robotics  and  (active)
Bayesian inference, there are also broad similar-
ities; importantly, both can be cast in terms of
model selection and optimization. 

The basic cycle of events is shown in Fig-
ure 6. The robot itself is shown in the centre
(A). The goal is to develop a controller capable
of generating forward movement. The challenge
is that the robot’s morphology is unknown to
the robot itself. The system starts with a range
of (generic prior) potential self-models (B), here
specified by various configurations of  three-di-
mensional physics engines. The robot performs
a series of initially random actions and evalu-
ates its candidate self-models on their ability to
predict the resulting proprioceptive afferent sig-
nals.  Even  though  all  initial  models  will  be
wrong,  some may be better  than others.  The
key step comes next. The robot evaluates new
candidate  actions  on the  extent  to  which  the
current  best  self-models  make different  predic-
tions as to their (proprioceptive) consequences.
These  disambiguating  actions  are  then  per-
formed, leading to a new ranking of self-models
based on their success at proprioceptive predic-
tion. This ranking, via the evolutionary robotics
methods of mutation and replication, gives rise
to a new population of  candidate self-models.
The upshot is that the system swiftly develops
accurate self-models that can be used to gener-
ate controllers enabling movement (D). An in-
teresting  feature  of  this  process  is  that  it  is
7 Evolutionary robotics involves the use of population-based

search  procedures  (genetic  algorithms)  to  automatically
specify control architectures (and/or morphologies) of mo-
bile  robots.  For  an  excellent  introduction  see  (Bongard
2013).

highly  resilient  to  unexpected  perturbations.
For instance, if a leg is removed then proprio-
ceptive prediction errors will immediately ensue.
As a result, the system will engage in another
round of self-model evolution (including the co-
specification of competing self-models and dis-
ambiguating actions) until a new, accurate, self-
model is regained. This revised self-model can
then be used to develop a new gait,  allowing
movement, even given the disrupted body (E,
F).8

This  study  emphasizes  that  the  opera-
tional criterion for a successful self-model is not
so much its fidelity to the physical robot, but
rather its ability to predict sensory inputs under
a repertoire of actions. This underlines that pre-
dictive models are recruited for the control of
behaviour (as cybernetics assumes) and not to
furnish  general-purpose  representations  of  the
world or the body.

The  study  also  provides  a  concrete  ex-
ample of how actions can be performed, not to
achieve some externally specified goal, but to
permit inference about the system’s own phys-
ical instantiation. Bayesian or not, this implies
active inference. Indeed, perhaps its most im-
portant contribution is that it highlights how
active  inference  can  prescribe  disruptive or
disambiguating actions  that  generate  sensory
prediction errors under competing hypotheses,
and not just actions that seek to confirm sens-
ory predictions. This recalls models of atten-
tion based on maximisation of  Bayesian sur-
prise (Itti & Baldi 2009), and is equivalent to
hypothesis  testing in science, where the best
experiments are those concocted on the basis
of  being most  likely to falsify a  given hypo-
thesis  (disruptive)  or  distinguish  between
competing  hypotheses  (disambiguating).  It
also  implies  that  agents  encode  predictions
about  the  likely  sensory  consequences  of  a
range of potential actions, allowing the selec-
tion of those actions likely to be the most dis-
ruptive or disambiguating. This concept of a
counterfactually-equipped  predictive  model
bring us nicely to our next topic: so-called en-
active cognitive science and its relation to PP.
8 Videos showing the evolution of both gait and self-model are avail-

able from http://creativemachines.cornell.edu/emergent_self_models
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4 Predictive processing and enactive 
cognitive science

4.1 Enactive theories, weak and strong

The idea that the brain relies on internal rep-
resentations or models of extra-cranial states of
affairs  has  been  treated  with  suspicion  ever
since the limitations of “good old fashioned arti-

ficial  intelligence”  became  apparent  (Brooks
1991). Many researchers of artificial intelligence
have indeed returned to cybernetics  as an al-
ternative  framework  in  which  closely  coupled
feedback loops,  leveraging  invariants  in  brain-
body-world  interactions,  obviate  the  need  for
detailed  internal  representations  of  external
properties (Pfeifer & Scheier 1999). The evolu-
tionary robotics methodology just described is
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often coupled with simple dynamical neural net-
works  in  order  to  realize  controllers  that  are
tightly embodied and embedded in just this way
(Beer 2003). Within cognitive science, such anti-
representationalism is  most vociferously defen-
ded by the movement variously known as “en-
active” (Noë 2004), “embodied” (Gallese & Sini-
gaglia 2011), or “extended” (Clark & Chalmers
1998)  cognitive  science.  Among  these  ap-
proaches, it is enactivism that is most explicitly
anti-representationalist. While enactive theorists
might  agree  that  adaptive  behaviour  requires
organisms and control structures that are sys-
tematically sensitive to statistical structures in
their  environment,  most  will  deny  that  this
sensitivity implies the existence and deployment
of  any  “inner  description”  or  model  of  these
probabilistic patterns (Chemero 2009;  Hutto &
Myin 2013).

This tradition has weak and strong expres-
sions. At the weak extreme is the truism that
perception, cognition, and behaviour—and their
underlying mechanisms—cannot be understood
without a rich appreciation of the roles of the
body, the environment, and the structured in-
teractions  that  they  support  (Clark 1997;
Varela et al. 1993). Weak enactivism is emin-
ently  compatible  with  PP,  as  seen  especially
with emerging versions of  PP that stress  em-
bodiment through self-modelling and interocep-
tion,  and  which  emphasize  the  importance  of
agent-environment  coupling  (embeddedness)
through active inference. At the other extreme
lie  claims that explanations based on internal
representations or models of any sort are funda-
mentally misguided, and that a new explicitly
non-representational vocabulary is needed in or-
der  to  make  sense  of  the  relations  between
brains, bodies, and the world (O’Regan et al.
2005). Strong enactivism is by definition incom-
patible with PP since it rejects the core concept
of the internal model. 

4.2 Sensorimotor contingency theory 

A landmark in the strongly enactive approach is
SMC (sensorimotor contingency) theory, which
says that perception depends on the “practical
mastery” of sensorimotor dependencies relevant

to behaviour (O’Regan &  Noë 2001). In brief,
SMC theory claims that experience and percep-
tion are not things that are “generated” by the
brain (or by anything else for that matter) but
are, rather, “skills” consisting of fluid patterns
of  on-going  interaction  with  the  environment
(O’Regan &  Noë 2001). For instance, on SMC
theory the conscious visual  experience of  red-
ness is given by  the exercise of practical mas-
tery of the laws governing how interactions with
red  things  unfold (these  laws  being  the
“SMC”s). The theory is not, however, limited to
vision: the experiential quality of the softness of
a sponge would be given by (practical mastery
of) the laws governing its squishiness upon be-
ing pressed.

Two aspects of  SMC theory deserve em-
phasis here. The first is that the concept of an
SMC rightly  underlines  the  close  coupling  of
perception and action and the critical import-
ance  of  ongoing  agent-environment interaction
in  structuring  perception,  action,  and  beha-
viour. This is inherited from Gibsonian notions
of perceptual affordance (Gibson 1979) and has
certainly  advanced  our  understanding  of  why
different kinds of perceptual experience (vision,
smell,  touch,  etc.)  have  different  qualitative
characters. 

The second is that mastery of an SMC re-
quires an essentially counterfactual knowledge of
relations between particular actions and the res-
ulting sensations. In vision, for instance, mas-
tery entails an implicit knowledge of the ways in
which moving our eyes and bodies would reveal
additional sensory information about perceptual
objects (O’Regan & Noë 2001). Here SMC the-
ory has made an important contribution to our
understanding  of  perceptual  presence.  Percep-
tual presence refers to the property whereby (in
normal circumstances) perceptual contents ap-
pear as subjectively real, that is, as existing. For
example, when viewing a tomato, we see it as
real  inasmuch as  we seem to  be  perceptually
aware of some of its parts (e.g., its back) that
are not currently causally impacting our sensory
surfaces. Looking at a picture of a tomato does
not give rise to the same subjective impression
of realness. But how can we be aware of parts of
the tomato that,  strictly speaking,  we do not
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see?  SMC theory  says  the  answer  lies  in  our
(implicit) mastery of SMCs, which relate poten-
tial actions to their likely sensory effects; and it
is  in  this  sense  that  we  can  be  perceptually
aware of parts of the tomato that we cannot ac-
tually see (Noë 2006). 

SMC theory  has  often  been  set  against
naïve  representationalist  theories  in  cognitive
science that propose such things as “pictures in
the head” or that (like good-old-fashioned-AI)
treat accurate representations of external prop-
erties as general-purpose goal states for cogni-
tion. This is all to the good. Yet by dispensing
with implementation-level concepts such as pre-
dictive inference, it struggles with the import-
ant question of what exactly is going on in our
heads during the exercise of mastery of a sen-
sorimotor contingency. 9 

4.3 Predictive perception of sensorimotor 
contingencies 

A  powerful  response  is  given  by  integrating
SMC theory with PP, in the guise of PPSMC
(Predictive Perception of SensoriMotor Contin-
gencies; Seth 2014b). An extensive development
of PPSMC is given elsewhere (see  Seth 2014b
plus commentaries and response). Here I sum-
marize the main points. First, recall that under
PP prediction errors can be minimized either by
updating perceptual predictions or by perform-
ing  actions,  where  actions  are  generated
through the resolution of proprioceptive predic-
tion  errors.  Also  recall  that  PP is  inherently
hierarchical, so that at some hierarchical level
predictive models  will  encode multimodal  and
even amodal expectations linking exteroceptive
(sensory) and proprioceptive (motor) sensations.
These models generate predictions about linked
sequences  of  sensory  and  proprioceptive  (and
possibly interoceptive) inputs corresponding to
specific actions,  with predictions becoming in-
creasingly modality-specific at lower hierarchical
levels.  These multi-level predictive models can

9 At a recent symposium of the AISB society that focused on SMC
theory, it was stated that “the main question is how to get the brain
into view from an enactive/sensorimotor perspective. […] Addressing
this question is urgently needed, for there seem to be no accepted al-
ternatives to representational interpretations of the inner processes”
(O’Regan & Dagenaar 2014).

therefore be understood as instantiating the im-
plicit  sub-personal  knowledge  of  sensorimotor
constructs underlying SMCs and their acquisi-
tion.  Put  simply,  hierarchical  active  inference
implies  the existence  of  predictive  models  en-
coding information very much like that required
by SMC theory.

The next step is to incorporate the notion
of  mastery of SMCs, which, as mentioned, im-
plies an essentially counterfactual kind of impli-
cit  knowledge.  The simple solution  is  to  aug-
ment  the  predictive  models  that  animate  PP
with  counterfactual  probability  densities.10 As
introduced  earlier  (section  4.1),  counterfactu-
ally-equipped predictive models encode not only
the likely causes of current sensory input, but
also the likely causes of fictive sensory inputs
conditioned  on  possible  but  not  executed  ac-
tions. That is, they encode how sensory inputs
(and their expected precisions) would change on
the basis of a repertoire of possible actions (ex-
pressed  as  proprioceptive  predictions),  even  if
those actions are not performed. The counter-
factual  encoding  of  expected  precision  is  im-
portant here, since it is on this basis that ac-
tions can be selected for their likelihood of min-
imizing  the  conditional  uncertainty  associated
with a perceptual prediction. There is a math-
ematical  basis  for  manipulating counterfactual
beliefs of this kind, as shown in a recent model
where counterfactual PP drives oculomotor con-
trol during visual search (Friston 2014;  Friston
et al. 2012).11 Here the main point is that coun-
terfactually-rich  predictive  models  supply  just
what is needed by SMC theory: an answer to
the  question  of  what  is  going  on  inside  our
heads during the exercise of mastery of SMCs. 

Counterfactual PP makes sense from sev-
eral  perspectives  (Seth 2014b).  As  mentioned
above, it provides a neurocognitive operational-
isation of the notion of mastery of SMCs that is
central to enactive cognitive science. In doing so
it dissolves apparent tensions between enactive
10 See Beaton (2013) for a distinct approach to incorporating counter-

factual  ideas  in SMC theory.  Beaton’s  approach remains  squarely
within the strongly enactivist tradition.

11 There are also some challenges lying in wait here. For instance, it
is  not  immediately  clear  how  important  assumptions  like  the
Laplace approximation can generalize to the multimodal probab-
ility distributions entailed by counterfactual PP (Otworowska et
al. 2014). 

Seth, A. K. (2015). The Cybernetic Bayesian Brain - From Interoceptive Inference to Sensorimotor Contingencies.
In T. Metzinger & J. M. Windt (Eds). Open MIND: 35(T). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570108 17 | 24

http://www.open-mind.net/
http://dx.doi.org/10.15502/9783958570108
http://www.open-mind.net/papers/@@chapters?nr=35


www.open-mind.net

cognitive  science  and  approaches  grounded  in
the Bayesian brain, but only at the price of re-
jecting the strong enactivist’s insistence that in-
ternal models or representations—of any sort—
are  unacceptable.12 PPSMC  also  provides  a
solution to the challenge of accounting for per-
ceptual  presence  within  PP.  The  idea  here  is
that  perceptual  presence  corresponds  to  the
counterfactual  richness of  predictive  models.
That is, perceptual contents enjoy presence to
the  extent  that  the  corresponding  predictive
models encode a rich repertoire of counterfac-
tual relations linking potential actions to their
likely sensory consequences.13 In other words, we
experience normal perception as world-revealing
precisely because the predictive models underly-
ing perceptual content specify a rich repertoire
of counterfactually explicit probability densities
encoding the mastery of SMCs. 

A good test of PPSMC is whether it can ac-
count for cases where normal perceptual presence
is lacking. An important example is synaesthesia,
where it is widely reported that synaesthetic “con-
currents”  (e.g.,  the  inexistent  colours  sometimes
perceived  along  with  achromatic  grapheme  in-
ducers) are not experienced as being part of the
world  (i.e.,  synaesthetes  generally  retain  intact
reality testing with respect to their concurrent ex-
periences). PPSMC explains this by noticing that
predictive models related to synaesthetic concur-
rents are counterfactually poor. The hidden (envir-
onmental) causes giving rise to concurrent-related
sensory signals do not embed a rich and deep stat-
istical structure for the brain to learn. In particu-
lar, there is very little sense in which synaesthetic
concurrents  depend on active  sampling  of  their
hidden causes.  According to PPSMC, it  is  this
comparative  counterfactual  poverty that explains
why synaesthetic concurrents lack perceptual pres-
ence. SMC theory itself struggles to account for
this phenomenon—not least because it struggles to
account for synaesthesia in the first place (Gray
2003). 
12 There is a more dramatic conflict with “radical” versions of enactiv-

ism, in which mental processes, and in some cases even their material
substrates, are allowed to extend beyond the confines of the skull
(Hutto & Myin 2013).

13 Presence may also depend on the hierarchical  depth of predictive
models inasmuch as this reflects object-related invariances in percep-
tion. For further discussion see commentaries and response to (Seth
2014b).

There are some challenges to thinking that
perceptual presence uniquely depends on coun-
terfactual  richness.  One might  think that  the
more familiar one is with an object, the richer
the  repertoire  of  counterfactual  relations  that
will be encoded. If so, the more familiar one is
with an object, the more it should appear to be
real. But prima facie it is not clear that famili-
arity and perceptual presence go hand-in-hand
like  this.14 Also,  some  perceptual  experiences
(like  the  experience  of  a  blue  sky)  can  seem
highly perceptually present despite engaging an
apparently poor repertoire of counterfactual re-
lations  linking  sensory  signals  to  possible  ac-
tions.  An  initial  response  is  to  consider  that
presence  might  depend  not  on  counterfactual
richness  per se, but on a “normalized” richness
based on higher-order expectations of counter-
factual  richness  (which  would  be  low for  the
blue  sky,  for  instance).  These  considerations
also point to potentially important distinctions
between  perceived  objecthood and  perceived
presence,  a  proper  treatment  of  which  moves
beyond the scope of the present paper.

5 Active inference

5.1 Counterfactual PP and active 
inference

Active inference has appeared repeatedly as an
important concept throughout this paper. Yet it
is more difficult to grasp than the basics of PP,
which involve passive predictive inference. This
is partly because several senses of active infer-
ence can be distinguished, which have not previ-
ously been fully elaborated. 

In  general,  active  inference  can  be  har-
nessed to drive action, or to improve perceptual
predictions. In the former case, actions emerge
from the minimization of proprioceptive predic-
tion errors through engaging classical reflex arcs
(Friston et al. 2010). This implies the existence
of generative models that predict time-varying
flows of proprioceptive inputs (rather than just
end-points), and also the transient reduction of
expected precision of proprioceptive prediction

14 Thanks to my reviewers for raising this provocative point.
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errors,  corresponding  to  sensory  attenuation
(Brown et al. 2013).

In the latter case, actions are engaged in
order to generate new sensory samples, with the
aim  of  minimizing  uncertainty  in  perceptual
predictions. This can be achieved in several dif-
ferent ways, as is apparent by analogy with ex-
perimental design in scientific hypothesis test-
ing. Actions can be selected that (i) are expec-
ted  to  confirm current  perceptual  hypotheses
(Friston et al. 2012); (ii)  are expected to  dis-
confirm such hypotheses; or (iii) are expected to
disambiguate between  competing  hypotheses
(Bongard et al. 2006). A scientist may perform
different experiments when attempting to find
evidence  against  a  current  hypothesis  than
when trying to decide between different hypo-
theses.  In  just  the same way,  active inference
may  prescribe  different  sampling  actions  for
these different objectives.

These distinctions underline that active in-
ference implies counterfactual PP. In order for a
brain to select those actions most likely to con-
firm, disconfirm, or decide between current pre-
dictive model(s), it is necessary to encode ex-
pected sensory inputs and precisions related to
potential  (but  not  executed)  actions.  This  is
evident  in  the  example  of  oculomotor  control
described earlier (Friston et al. 2012). Here, sac-
cades are guided on the basis of the expected
precision of sensory prediction errors so as to
minimize the uncertainty in current perceptual
predictions.  Note that this study retained the
higher-order prior that only a single perceptual
prediction  exists  at  any  one  time,  precluding
active inference in its disambiguatory sense.

Several  related  ideas  arise  in  connection
with  these  new  readings  of  active  inference.
Seeking disconfirmatory or disruptive evidence
is closely related to maximizing Bayesian sur-
prise (Itti & Baldi 2009). This also reminds us
that  the  best  statistical  models  are  usually
those  that  successfully  account  for  the  most
variance  with  the  fewest  degrees  of  freedom
(model parameters), not just those that result
in low residual error per se. In addition, disam-
biguating  competing  hypotheses  moves  from
Bayesian  model  selection  and  optimization  to
model  comparison,  where  arbitration  among

competing  models  is  mediated  by  trade-offs
between accuracy and model complexity (Rosa
et al. 2012).

The information-seeking (or “infotropic”15)
role of active inference puts a different gloss on
the free energy principle, which had been inter-
preted simply as minimization of prediction er-
ror. Rather, now the idea is that systems best
ensure their long-run survival by inducing the
most predictive model of the causes of sensory
signals, and this requires disruptive and/or dis-
ambiguating active inference, in order to always
put  the  current-best  model  to  the  test.  This
view helps dissolve worries about the so-called
“dark room problem” (Friston et al. 2012), in
which prediction error is minimized by predict-
ing something simple (e.g., the absence of visual
input) and then trivially confirming this predic-
tion (e.g., by closing one’s eyes).16 Previous re-
sponses to this challenge have appealed to the
idea of higher-order priors that are incompatible
with trivial minimization of lower-level predic-
tion errors: closing one’s eyes (or staying put in
a dark room) is not expected to lead to homeo-
static integrity on average and over time (Fris-
ton et  al. 2012;  Hohwy 2013).  It  is  perhaps
more  elegant  to  consider  that  disruptive  and
disambiguatory active inferences imply explor-
atory  sampling  actions,  independent  of  any
higher-order priors about the dynamics of sens-
ory signals per se. Further work is needed to see
how cost  functions  reflecting  infotropic  active
inference can be explicitly incorporated into PP
and the free energy principle.

5.2 Active interoceptive inference and 
counterfactual PP

What can be said about counterfactual PP and
active inference when applied to  interoception?
Is there a sense in which predictive models un-
derlying emotion and mood encode counterfac-
tual  associations  linking  fictive  interoceptive
signals (and their likely causes) to autonomic or
allostatic controls? And if so, what phenomeno-
15 Chris Thornton came up with this term (personal communication).
16 The term “dark room problem” comes from the idea that a free-en-

ergy-minimizing (or surprise-avoiding) agent could minimize predic-
tion error just by finding an environment that lacks sensory stimula-
tion (a “dark room”) and staying there.
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logical  dimensions  of  affective  experience  de-
pend on these associations? While these remain
open questions, we can at least sketch the ter-
ritory. 

We have seen that active inference in ex-
teroception implies counterfactual processing, so
that actions can be chosen according to their
predicted effects in terms of (dis)confirming or
disambiguating  sensory  predictions.  The  same
argument applies to interoception. For active in-
teroceptive inference to effectively disambiguate
predictive models, or (dis)confirm interoceptive
predictions, predictive models must be equipped
with counterfactual associations relating to the
likely effects  of  autonomic or  (at  higher  hier-
archical  levels)  allostatic  controls.  At  least  in
this sense, interoceptive inference then also in-
volves counterfactual expectations. 

That said, there are likely to be substan-
tial differences in how counterfactual active in-
ference plays out in interoceptive settings. For
instance, it may not be adaptive (in the long
run)  for  organisms  to  continually  attempt  to
disconfirm current interoceptive predictions, as-
suming these are compatible with homeostatic
integrity. To put it colloquially, we do not want
to drive our essential variables continually close
to viability limits,  just to check whether they
are always capable of returning. This recalls our
earlier point (section 4.1) that predictive control
is  more  naturally  applicable  to  interoception
than  exteroception,  given  the  imperative  of
maintaining  the  homeostasis  of  essential  vari-
ables. In addition, the causal structure of coun-
terfactual associations encoded by interoceptive
predictive models is undoubtedly very different
than in cases like vision. These differences may
speak to the substantial phenomenological dif-
ferences in the kind of perceptual presence asso-
ciated  with  these  distinct  conscious  contents
(Seth et al. 2011). 

6 Conclusion

This  paper has surveyed predictive  processing
(PP) from the unusual viewpoint of cybernetic
origins  in  active  homeostatic  control  (Ashby
1952;  Conant &  Ashby 1970).  This  shifts  the
perspective  from  perceptual  inference  as  fur-

nishing representations of the external world for
the  consumption  of  general-purpose  cognitive
mechanisms,  towards  model-based  predictive
control as a primary survival imperative from
which perception, action, and cognition ensue.
This view is aligned with the free energy prin-
ciple (Friston 2010); however it attempts to ac-
count  for  specific  cognitive  and phenomenolo-
gical  properties,  rather than for adaptive sys-
tems  in  general.  Several  implications  follow
from these considerations. Emotion becomes a
process  of  active  interoceptive  inference  (Seth
2013)—a process  that  also  recruits  autonomic
regulation and influences intuitive decision-mak-
ing through behavioural  allostasis.  A common
predictive  principle  underlying  interoception
and exteroception also provides an integrative
view of the neurocognitive mechanisms underly-
ing embodied selfhood, in particular the experi-
ence of body ownership (Apps & Tsakiris 2014;
Limanowski & Blankenburg 2013;  Suzuki et al.
2013). In this view, the experience of embodied
selfhood is specified by the brain’s “best guess”
of those signals most likely to be “me” across
exteroceptive and interoceptive domains. From
the perspective of cybernetics the embodied self
is both that which needs to be homeostatically
maintained and also the medium through which
allostatic interactions are expressed. 

A second influential line deriving from cy-
bernetics sets PP within the broader context of
model-based  versus  enactivist  perspectives  on
cognitive science. On one hand, cybernetics has
been  cited  in  support  of  non-representational
cognitive science in virtue of  its  showing how
simple mechanisms can give rise to complex and
apparently goal-directed behaviour by capitaliz-
ing on agent-environment interactions, mediated
by the body (Pfeifer &  Scheier 1999). On the
other, the cybernetic legacy shows how PP can
put mechanistic flesh on the philosophical bones
of enactivism, but only by embracing a finessed
form of representationalism (Seth 2014b). A key
concept within enactive cognitive science is that
of  mastery  of  sensorimotor  contingencies
(SMCs). This concept is useful for understand-
ing the qualitative character of distinct percep-
tual modalities, yet as expressed within enactiv-
ism it lacks a firm implementation basis. “Pre-
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dictive Perception  of  SensoriMotor Contingen-
cies” (PPSMC) addresses this challenge by pro-
posing that SMCs are implemented by predict-
ive  models  of  sensorimotor  relations,  under-
pinned  by  the  continuity  between  perception
and action entailed by active inference. Mastery
of sensorimotor contingencies  depends on pre-
dictive  models  of  counterfactual  probability
densities that specify the likely causes of sens-
ory signals that  would occur  were specific ac-
tions taken. By relating PP to key concepts in
enactivism,  this  theory is  able  to account  for
phenomenological  features  well  treated by the
latter,  such  as  the  experience  of  perceptual
presence (and its absence in cases like synaes-
thesia).

Considering these issues leads to distinct
readings of active inference, which at its most
general implies the selective sampling of sensory
signals  to  minimize  uncertainty about percep-
tual predictions. At a finer grain, active infer-
ence can involve performing actions to confirm
current predictions,  to disconfirm current pre-
dictions, or to disambiguate competing predic-
tions. These different senses rest on the concept
of counterfactually-equipped predictive models;
and they generalize the free energy principle to
include  Bayesian-model  comparison  as  well  as
optimization and inference.

In summary, the ideas outlined in this pa-
per provide a distinctive integration of predict-
ive  processing,  cybernetics,  and  enactivism.
This  rich  blend  dissolves  apparent  tensions
between internalist and enactivist (model-based
and model-free)  views  on  the  neural  mechan-
isms underlying perception, cognition, and ac-
tion; it elaborates common predictive mechan-
isms underlying perception and control of  self
and world; it provides a new view of emotion as
active interoceptive inference, and it shows how
“counterfactual”  predictive  processing  can  ac-
count for the phenomenology of conscious pres-
ence  and its  absence  in  specific  situations.  It
also finesses the concept of active inference to
engage distinct forms of hypothesis testing that
prescribe different sampling actions (one bonus
is  that  the  “dark room problem” is  elegantly
solved).  At  the  same  time,  new and  difficult
challenges arise in validating these ideas experi-

mentally  and  in  distinguishing  them from al-
ternative explanations that do not rely on in-
ternally-realised inferential mechanisms.
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Perceptual Presence in the Kuhnian-
Popperian Bayesian Brain
A Commentary on Anil K. Seth

Wanja Wiese

Anil Seth’s target paper connects the framework of PP (predictive processing) and
the FEP (free-energy principle) to cybernetic principles. Exploiting an analogy to
theory of science, Seth draws a distinction between three types of active infer-
ence. The first type involves confirmatory hypothesis-testing. The other types in-
volve seeking disconfirming and disambiguating evidence, respectively. Further-
more,  Seth applies PP to various fascinating phenomena, including perceptual
presence. In this commentary, I explore how far we can take the analogy between
explanation in perception and explanation in science.

In the first part, I draw a slightly broader analogy between PP and con-
cepts in theory of science, by asking whether the Bayesian brain is Kuhnian or
Popperian. While many aspects of PP are in line with Karl Popper’s falsification-
ism, other aspects of PP conform to how Thomas Kuhn described scientific revolu-
tions. Thus, there is both a sense in which the Bayesian brain is Kuhnian, and a
sense in which it is Popperian. The upshot of these considerations is that falsific-
ation in PP can take many different forms. In particular, active inference can be
used to falsify a model in more ways than identified by Seth. 

In the second part of this commentary, I focus on Seth’s PPSMCT (predict-
ive processing account of sensorimotor contingency theory) and its application to
perceptual presence, which assigns a crucial role to counterfactual richness. In my
discussion, I  question the significance of counterfactual richness for perceptual
presence. First, I highlight an ambiguity inherent in Seth’s descriptions of the tar-
get phenomenon (perceptual presence vs. objecthood). Then I suggest that coun-
terfactual richness may not be the crucial underlying feature (of either perceptual
presence or objecthood). Giving a series of examples, I argue that the degree of
represented causal integration  is an equally good candidate for accounting for
perceptual presence (or objecthood), although more work needs to be done.
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1 Introduction

One of the relevant aspects of Seth’s discussion
is  the  way  in  which  it  highlights  interesting
links to theoretical precursors of PP. In doing
so, he broadens the historical context in which
the  framework  is  usually  situated.  However,
these considerations are not just relevant for the

history of science, they also constitute a theor-
etical  underpinning  of  several  ways  in  which
Seth  has  recently  developed  PP  accounts  of
various phenomena. Due to limited space, I can
only address some of these here. In particular, I
will focus on his three interpretations of active

Wiese, W. (2015). Perceptual Presence in the Kuhnian-Popperian Bayesian Brain - A Commentary on Anil K. Seth.
In T. Metzinger & J. M. Windt (Eds). Open MIND: 35(C). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570207 1 | 19

http://www.open-mind.net/showAuthor?author=Wanja_Wiese
http://www.open-mind.net/showAuthor?author=Wanja_Wiese
http://www.open-mind.net/showAuthor?author=JenniferM_Windt
http://www.open-mind.net/showAuthor?author=Thomas_Metzinger
http://www.open-mind.net/showAuthor?author=AnilK_Seth
http://dx.doi.org/10.15502/9783958570207
http://www.open-mind.net/collection.pdf#nameddest=perceptual-presence-in-the-kuhnian-popperian-bayesian-brain-a-commentary-on-anil-seth-wanja-wiese


www.open-mind.net

inference, and on his PP account of perceptual
presence. In so doing, I will also try to take the
analogy between explanation in perception and
explanation  in  science  a  little  further  than it
has previously been taken. 

In  section  2,  I  will  briefly  summarize
Seth’s view on the connection between cyber-
netics and the free-energy principle. One of the
results of his considerations is that a distinction
can be drawn between three types of active in-
ference. The first type involves confirmatory hy-
pothesis-testing. The other types involve seeking
disconfirming and disambiguating evidence, re-
spectively. Seth does not say much about what
it takes to disconfirm or falsify a hypothesis or
model. Furthermore, he seems to suggest that
not all types of active inference he distinguishes
are currently part of PP (at least in the version
described  by  Karl  Friston’s  FEP):  “[t]hese
points represent significant developments of the
basic infrastructure of PP” (Seth 2014, p. 3).1
In section  3, I will provide clarification of the
notion of falsification by referring to the works
of  Karl  Popper,  Imre  Lakatos,  and  Thomas
Kuhn. I will also provide examples to show that
different types of falsification are part and par-
cel of PP, not extensions of the basic infrastruc-
ture. In section  4, I point out an ambiguity in
Seth’s account of perceptual presence (percep-
tual presence vs. objecthood). After this, I sug-
gest that counterfactual richness may not be the
crucial underlying feature (of either perceptual
presence or objecthood). Giving a series of ex-
amples, I argue that the degree of  represented
causal integration is an equally good candidate
for accounting for perceptual presence (or ob-
jecthood),  although  more  work  needs  to  be
done.

2 Cybernetics and the free-energy 
principle

In his very rich target paper, Anil Seth calls at-
tention to one of the less well-considered pre-
cursors of PP: cybernetics. A central concept of
cybernetics is the notion of homeostasis, which
denotes an equilibrium of the system’s paramet-
1 Unless stated otherwise, all page numbers refer to the target paper

by Anil Seth.

ers. This equilibrium is maintained by keeping
the  system’s  essential  variables,  like  levels  of
blood oxygenation or blood sugar (cf. Seth this
collection, p. 7), within a certain range (cf. ibid.
pp. 7-8.). The process of achieving homeostasis
is  called  allostasis  (cf.  ibid. p.  8).  Cybernetic
systems are teleological, i.e.,  goal-directed, be-
cause they are always trying to reach and pre-
serve homeostasis. This suggests that control is
more important than perception (cf. ibid. p. 9),
and,  as  Seth  emphasizes,  it  prioritizes  intero-
ceptive  control  over  exteroceptive  control:  the
main goal  is  to  control  the system’s  essential
variables; interaction with the world is only ne-
cessary to the extent that it affects these vari-
ables (ibid. pp. 9-10.).

The principles of cybernetics fit astonish-
ingly  well  to  ideas  motivating  Karl  Friston’s
FEP (which can, in some respects, be seen as a
generalization  of  predictive  processing).2 The
fundamental assumption behind this principle is
that biological systems seek to “maintain their
states and form in the face of a constantly chan-
ging environment” (Friston 2010, p. 127). This
is  obviously  similar  to  the  goal  of  achieving
homeostasis.3 Another focus of FEP is active in-
ference, because action can reduce the surprisal
of the agent’s states (which is necessary to “res-
ist  a  tendency  to  disorder”,  Friston 2009,  p.
293); perceptual inference can only reduce the
free-energy bound on surprise (Friston 2009, p.
294). This is in stark contrast with the Helm-
holtzian roots of PP, according to which action
is primarily in the service of perception:

[...] wir beobachten unter fortdauernder ei-
gener  Thätigkeit,  und  gelangen  dadurch
zur Kenntniss des Bestehens eines gesetz-
lichen  Verhältnisses  zwischen unseren In-
nervationen  und  dem  Präsentwerden  der
verschiedenen  Eindrücke  aus  dem  Kreise

2 It is more general, because predictive processing only plays a role in it if
combined with the Laplace approximation (which entails, roughly, that
probability distributions are approximated by Gaussian distributions).
This approximation, however, also turns FEP into a more specific ver-
sion, by assuming that the brain codes probability distribution as Gaus-
sian distributions (which is not entailed by the general predictive pro-
cessing framework discussed in Clark 2013, for instance).

3 In fact, the free-energy principle seems to be partly inspired by cy-
bernetic  ideas.  Friston (2010,  p.  127),  for  instance,  cites  Ashby
(1947) when explaining the motivation for FEP.
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der  zeitweiligen  Präsentabilien.  Jede  un-
serer  willkührlichen  Bewegungen,  durch
die wir die Erscheinungsweise der Objecte
abändern,  ist  als  ein  Experiment  zu  be-
trachten, durch welches wir prüfen, ob wir
das gesetzliche Verhalten der vorliegenden
Erscheinung,  d.h. ihr  vorausgesetztes  Be-
stehen  in  bestimmter  Raumordnung,
richtig aufgefasst haben.4 (Helmholtz 1959,
p. 39) 

According to this view, the main target of ac-
tion is to find confirmatory evidence for intern-
ally-generated hypotheses. In short, the contrast
between these  two views  can be  described  as
“action as hypothesis-testing” versus “action as
predictive control”. Whereas the first seems to
fit best to the Helmholtzian roots of PP (and
puts  action  in  the  service  of  perception),  the
second seems to fit better to its cybernetic ori-
gins.  Most  notably,  the  free-energy  principle
combines  both  aspects,  but  assigns  a  pivotal
role to action (perceptual inference only makes
the free-energy bound on surprise tight, active
inference leads to a further reduction of free en-
ergy, reducing surprise implicitly).

Seth compares model selection and optim-
ization  in  evolutionary  robotics  to  how  these
processes  are  implemented  in  active  inference
(pp. 14-15.). He cites the famous starfish robot
developed by  Josh Bongard,  Victor Zykov,  &
Hod Lipson (2006)  as  an  example.  In  a  first
phase, the robot generates multiple competing
models of its own morphology and performs ac-
tions  for  which  these  models  predict  different
sensory  feedback.  By  comparing  these  predic-
tions  to  the  actual  feedback,  the  starfish  can
thus exclude some of the possible models. When
the robot has eliminated all but one model, a
second phase starts and it uses this model to
control its body and generate walking behavior
(action as  predictive  control).  Crucially,  when
the robot’s morphology changes (when an ex-
4 “[...]  we observe under constant own activity, and thereby achieve

knowledge of the existence of a lawful relation between our innerva-
tions and the presence of different impressions of temporary present-
ations [Präsentabilien]. All of our willful movements through which
we change the appearance of things should be considered an experi-
ment, through which we test whether we have grasped correctly the
lawful behavior of the appearance at hand, i.e. its supposed existence
in determinate spatial structures.” (My translation)

perimenter  removes  one  of  its  limbs),  it  can
switch back to the first phase, re-creating com-
peting  models  and  using  action  to  eliminate
most of them (action as hypothesis-testing).

Seth points out that the second phase, in
which the robot walks around, suggests that the
main purpose of predictive models is to control
behavior  effectively,  regardless  of  how  accur-
ately it  represents  the  world  or  the body (p.
15). In the first phase, by contrast, exploratory
actions are conducted in order to learn some-
thing about the body, not to reach a goal in-
volving its environment (ibid.). As noted above,
such instances of action conform more to Helm-
holtzian than to cybernetic roots (action as hy-
pothesis-testing).

What this shows is that action can fulfill
different  purposes—not  just  theoretically,  but
also in real applications. The robot starfish uses
action in at least two ways. Drawing on the of-
ten-noted  analogy  between  PP  and  scientific
practice (cf.  Gregory 1980), Seth explores fur-
ther purposes of action. This leads to a distinc-
tion between three types of active inference (pp.
18f.). The first involves active sampling to con-
firm predictions  derived  from currently  active
models; the second is employed to seek evidence
that  would  disconfirm  currently  held  hypo-
theses; the third involves sampling in order to
disambiguate  between  alternative  hypotheses
(p. 19).

Crucially,  Seth  does  not  elaborate  much
on the notion of falsification or disconfirmation.
He relates disconfirmation to Bayesian surprise
(which formalizes the extent to which new evid-
ence leads to a revision of prior representations,
cf.  Baldi &  Itti 2010). Accordingly, he charac-
terizes  seeking  falsifying  evidence  in  terms  of
maximizing Bayesian surprise. However, the pa-
per quoted in this context,  Itti & Baldi (2009)
only investigates the hypothesis that surprising
information attracts attention, not that subjects
act to maximize surprise. Friston et al. (2012, p.
6) clarify the relation between FEP and maxim-
ization of Bayesian surprise:

The term Bayesian surprise can be a bit
confusing because minimizing surprise per
se  (or  maximizing  model  evidence)  in-
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volves keeping Bayesian surprise (complex-
ity) as small as possible. This paradox can
be resolved here by noting that agents ex-
pect  Bayesian  surprise  to  be  maximized
and then acting to minimize their surprise,
given what they expect.

In the following section, I will clarify the notion
of falsification, and discuss the ways in which it
is used in PP. More specifically, I will illustrate
various types of active inference by drawing a
slightly broader analogy with theory of science.
In particular, I will consider views put forward
by  Karl  Popper  and  Thomas  Kuhn,  respect-
ively. This will serve to help us get a handle on
the general merits of confirmation and discon-
firmation. Furthermore, both Popper’s falsifica-
tionism and Kuhn’s paradigm change can be re-
lated to aspects of predictive processing, which
will hopefully lead to a better understanding of
hypothesis-testing  in  PP. As a consequence,  I
invite Seth to provide a refined treatment of the
relation  between falsification  and active  infer-
ence.

3 Is the Bayesian brain Kuhnian or 
Popperian?5

The  free-energy  principle  subsumes  the
Bayesian brain hypothesis6 (cf.  Friston 2009, p.
294). According to this view, processing in the
brain can usefully be described as Bayesian in-
ference. This means that the brain implements
a probabilistic model that is updated in light of
sensory signals using Bayes’ theorem. More spe-
cifically,  the  brain  combines  prior  knowledge
about hidden causes in the world with a meas-
urement of  likelihood describing how probable
the observed (sensory) evidence is, given various
possible hidden causes. The result is a distribu-
tion  (posterior)  that  describes  how  probable
various possible causes are, given the obtained
evidence. The process of determining the pos-
5 It should be noted that Popper rejected interpretations of confirma-

tion  (or  corroboration)  in  terms  of  probabilities  (cf.  Popper
2005[1934], ch. X), as well as Bayesian interpretations of probability
theory (cf. Popper 2005[1934], ch. *XVII). Here, I only suggest that
a  useful  analogy  between  Popper’s  theory  of  science  and  the
Bayesian brain can be drawn.

6 Seth identifies PP and the Bayesian brain (cf. p. 1). I follow suit in
this commentary.

terior is often called  model inversion. In FEP,
this  type  of  inference  is  approximated  using
variational Bayes, which establishes the connec-
tion  to  predictive  processing  (cf.  footnote  2
above). FEP can thus either be seen as a partic-
ular instance of the Bayesian brain hypothesis,
or as a generalization.

As  mentioned  above,  it  is  often  pointed
out that perceptions in PP are analogous to sci-
entific hypotheses. The Bayesian brain is thus a
hypothesis-testing brain (this analogy is also re-
ferred to in titles of papers by Jakob Hohwy, see
Hohwy 2010, 2012). Thanks to active inference,
the Bayesian brain performs an active kind of
hypothesis testing. The three types of active in-
ference distinguished by Seth assign a role  to
both confirmation and disconfirmation (falsific-
ation). This dual role of active inference is also
emphasized by (Friston et al. 2012, p. 19):

The resulting active or embodied inference
means that not only can we regard percep-
tion  as hypotheses,  but  we could  regard
action  as  performing  experiments  that
confirm or disconfirm those hypotheses.

Further exploration of the analogy to theory of
science reveals a puzzle: as we will see, doubts
can be raised regarding the idea that a theory
gains merit when it  is  confirmed (or even re-
garding the very notion of theory confirmation).
Does this mean that the Bayesian brain gener-
ates hypotheses in an unscientific way? 

3.1 The Popperian Bayesian brain

3.1.1 Conceptual clarification: From naïve 
to sophisticated falsificationism

According to Popper, science advances mainly
by seeking falsifying evidence. In fact, falsifiabil-
ity is Popper’s proposed solution to the demarc-
ation  problem,  i.e.,  the  problem of  specifying
the difference between science and pseudo-sci-
ence. Scientific theories posit universal proposi-
tions (scientific laws) that can never be proven
in a  strict  sense,  because  only  finite  observa-
tions can be made. The next observation could,
in principle, always disconfirm a universal em-
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pirical hypothesis. Hence, being verifiable can-
not be a criterion for being scientific, because
theories cannot be empirically verified (cf. Pop-
per 2005[1934],  pp.  16-17.).  Conversely,  it  is
possible to falsify a universal statement using a
single empirical proposition:

Diese  Überlegungen  legen  den  Gedanken
nahe,  als  Abgrenzungskriterium nicht die
Verifizierbarkeit,  sondern  die  Falsifiz-
ierbarkeit des  Systems  vorzuschlagen;  […]
Ein  empirisch-wissenschaftliches  System
muß an der Erfahrung scheitern können.
(Popper 2005[1934], p. 17)7

Scientific  theories  thus  cannot,  according  to
Popper, be verified, but only falsified. However,
when  attempts  to  falsify  a  hypothesis  have
failed, we can say that the theory has been cor-
roborated—which  still  means  that  the  theory
could  be  falsified  in  the  future  (cf.  Popper
2005[1934], ch. X).

How can we apply these ideas to predict-
ive processing? First, we have to find an analo-
gon to scientific theories. I suggest that models
can be treated analogously to theories, because
in  PP,  predictions  or  hypotheses  are  derived
from models and then compared to bottom-up
signals. This also fits the way in which Seth de-
scribes the starfish example (namely in terms of
model  selection).  What  does  it  mean  that  a
model is falsified in PP?

The question is not a trivial one, as there
seems to be a crucial disanalogy between hypo-
thesis-testing in Popper’s sense and hypothesis-
testing in the Bayesian brain. The reason why
scientific theories are falsifiable is that they al-
low  deriving  hypotheses  deductively.  This
means if a hypothesis is falsified, the theory is
falsified as well. By contrast, hypotheses in the
Bayesian brain are not deductively entailed by
the models from which they are derived: the re-
lation between model and hypothesis is probab-
ilistic (the hypothesis is more or less probable,
given the model). Hence, when a hypothesis or
prediction elicits  a large prediction error,  this

7 “These considerations suggest proposing not verifiability, but falsifiability
as a demarcation criterion; […] An empirical-scientific system must be
able to break down in the light of empirical evidence.” (My translation)

does not falsify the model; rather, it calls for an
update  to  the  effect  that  the  model  becomes
less likely. Furthermore, according to Popper, it
does  not  make  sense  to  say  that  such  hypo-
theses are corroborated to a greater or lesser ex-
tent.  For  being  corroborated  means  that  at-
tempts at falsification have failed. But if it is in
principle impossible to falsify a hypothesis, then
saying that it  has been corroborated becomes
empty—worse,  such  hypotheses  are  not  even
scientific hypotheses (cf. Popper 2005[1934], pp.
248-249.).  This,  then,  constitutes  the  puzzle
mentioned above: if hypotheses in PP are not
falsifiable, does this mean the Bayesian brain is
unscientific?

This conclusion—that no useful analogy to
Popper’s theory of science can be drawn—rests
on a naïve understanding of falsification (as em-
phasized by Imre Lakatos, cf. Lakatos 1970).8 A
closer look at the notion of falsification reveals
that the analogy can be upheld. Furthermore, it
helps us gain a better grasp of  the notion of
falsification in the context of PP.

First of all, we can note that in actual sci-
entific practice, it is not the case that scientists
attempt to falsify an isolated, single hypothesis
—and then try to come up with a new theory
when the hypothesis has been falsified. Rather,
scientists often operate with different versions of
a theory at the same time, or seek to find the
best parameters for a model. The outcomes of
an empirical study are then used to eliminate
some  of  the  different  theories  or  parameter
ranges. This has already been acknowledged by
Popper (cf.  2005[1934],  p.  63.,  fn.  10).  As
Thomas Nickles puts it:

According  to  Popper,  at  any  time  there
may be several  competing theories  being
proposed  and  subsequently  refuted  by
failed empirical tests—rather like balloons
being launched and then shot down, one
by one. (2014)

The result of this falsification procedure is that
some of the competing theories are eliminated.
This can already be seen as a slight departure
8 I am grateful to Thomas Metzinger for pointing me to Lakatos’ work

on falsificationism.
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from what Imre Lakatos calls naïve falsification-
ism: for the elimination may be based on a com-
parison, not on an isolated falsification proced-
ure. If some of the theories are in some sense
better than the others (for instance, by making
more  empirical  predictions,  or  by  being  less
complex),  then they can be preferred without
having independent reasons to reject the elimin-
ated theories. However, Popper’s falsificationism
is even more sophisticated.

Popper noted that there were no theory-
neutral  empirical  propositions.  Descriptions  of
empirical facts are not immediately given, they
are based on observations and involve interpret-
ations  (cf.  Popper 2005[1934],  p.  84,  fn.  32).
This means it is always possible to add auxili-
ary hypotheses to a theory, and thereby make
the theory compatible with seemingly falsifying
evidence. As a consequence, when it comes to
determining  whether  a  theory  is  scientific  or
not, we cannot consider an isolated theory, but
must assume a diachronic stance, in which we
consider how a theory is modified in the light of
new evidence. Such modifications (e.g.,  auxili-
ary hypotheses) increase the empirical content
of  the  theory  (cf.  Lakatos 1970,  p.  183).  As
Popper puts it:

Bezüglich  der  Hilfshypothesen  setzen  wir
fest, nur solche als befriedigend zuzulassen,
durch  deren  Einführung  der  ‘Falsifizier-
ungsgrad’ des Systems […] nicht herabge-
setzt,  sondern  gesteigert  wird;  in  diesem
Fall  bedeutet  die  Einführung  der  Hypo-
these eine Verbesserung: Das System ver-
bietet  mehr  als  vorher.9 (Popper
2005[1934], p. 58)

When confronted with evidence that contradicts
predictions, we are thus never forced to reject
the theory from which the prediction has been
derived. We may always modify the theory. But
this modification must not be ad hoc. Auxiliary
hypotheses that only make the theory compat-
ible with the evidence, without having any addi-
9 “Regarding such auxiliary hypotheses we stipulate that we allow only

those hypotheses for which the ‘degree of falsifiability’ of the system
is not decreased, but increased; in this case the introduction of auxil-
iary hypotheses means an improvement: The system prohibits more
than before.” (My translation)

tional value (without allowing new predictions),
are not scientific.

Lakatos (1970)  emphasizes  that  this  en-
tails a refined notion of falsificationism. He calls
this sophisticated falsificationism (or sophistic-
ated  methodological falsificationism).  A theory
can  only  be  falsified  in  this  “sophisticated”
manner when it has been replaced by a theory
that:

1. has more empirical content (makes new pre-
dictions), and

2. makes at least one prediction that is empiric-
ally corroborated (cf. Lakatos 1970, pp. 183-
184.).

3.1.2 Sophisticated falsification in the 
Bayesian brain

Popper’s  sophisticated  falsificationism10 can
more easily be applied to predictive processing,
because  it  does  not  require  that  we  reject  a
model whenever its predictions yield large pre-
diction errors.  Instead,  the model  can be  up-
dated to achieve a better fit with the data. Fur-
thermore, we find a counterpart for the insight
that  there  are  no  theory-neutral  observations:
bottom-up  signals  are  never  treated  as  raw
data, but as being (more or less) noisy. Hence,
prediction errors are weighted by expected pre-
cisions.  When  the  expected  precision  is  ex-
tremely  low,  prediction  errors  will  be  attenu-
ated. A low expected precision can thus be seen
as  analogous  to  an  auxiliary  hypothesis  that
makes  the  model  compatible  with  otherwise
contradicting evidence. What is more, it is not
an ad hoc move, because the precision estimate
itself is also constantly being updated in light of
the evidence. Similarly, when a model generates
a significant amount of prediction error, but is
strongly supported by a higher-level model with
high prior probability, a relatively high amount
of prediction error may not lead to a major re-
vision of the model.

10 Lakatos (1970)  points  out  that  Popper  himself  never  made  a
sharp  distinction  between  naïve  and  sophisticated  falsification-
ism, but that he accepted the assumptions underlying sophistic-
ated falsificationism, at least in parts of his work—whereas the
person Karl Popper may have been more of a naïve than a soph-
isticated falsificationist. 
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Model competition in PP can also be seen
as an instance of sophisticated falsificationism.
Competition need not be resolved by eliminat-
ing those models that yield the largest predic-
tion errors (as in the starfish robot). Instead, it
may be that some models make more specific
counterfactual predictions. Indeed, this seems to
be the main rationale behind active inference in
FEP.

According to the formalization provided in
Friston et al. (2012, p. 4), active inference in-
volves minimizing the entropy of a counterfac-
tual density. This density links future internal
states  and  hidden  controls  to  hidden  states,
which cause sensory states; hidden controls are
hidden states  that  can  be  changed  by action
(Friston et al. 2012, p. 3). A density has low en-
tropy, roughly, if it assigns high values to a rel-
atively small subset of states, and low values to
most other sets of states. Predictions based on a
probability density with very low entropy can
thus be made with a high level of confidence,
because most other possibilities are more or less
ruled  out  (due  to  the  low values  assigned to
them by the density). Formally, this is reflected
in the proposition that the negative entropy of
the counterfactual density is a monotonic func-
tion  of  the  precision  of  counterfactual  beliefs
(Friston et al. 2012, p. 4).

The entropy of the counterfactual density
is minimized with respect to hidden controls. In
effect,  this  is  a  selection  process,  in  which  a
model (here: a counterfactual density) is selec-
ted that has minimal entropy. The other models
are  eliminated,  because  they  have  higher  en-
tropies.  We  can  say  they  are  falsified  in  the
sense of sophisticated falsificationism (but not
in the sense of naïve falsificationism).

Another way in which model competition
can be resolved without naïve falsification can
be  illustrated  by  the  famous  “wet  lawn”  ex-
ample (cf. Pearl 1988). Suppose you enter your
garden and find that the lawn is wet. There are
at least two models that can explain this: either
your sprinkler has been on during the night or
it has rained. Let us assume that both models
are initially  equally likely (i.e.,  they have the
same prior probability). When you now observe
that your neighbor’s garden is also wet, the rain

model  is  corroborated,  because  it  makes  the
strong  prediction  that  the  neighbor’s  lawn  is
wet  (i.e.,  the  conditional  probability  that  the
neighbor’s lawn is wet, given that it has rained,
is high). The other model is not incompatible
with this evidence, but it is not supported by it
as  much  (because  the  conditional  probability
that the neighbor’s lawn is wet, given that your
sprinkler has been on, is not as high). In other
words,  it  has  been  explained  away.  As  Jakob
Hohwy puts it:

The Rain model accounts for all the evid-
ence  leaving  no  evidence  behind  for  the
Sprinkler model to explain. Even though
the Sprinkler model did increase its prob-
ability in the light of the first observation,
it  seems  intuitive  right  to  say  that  its
probability  is  now  returned  to  near  its
prior value. The model has been explained
away. (2010, p. 137)

Explaining away is another example of sophist-
icated  falsification.  Even  when  two  or  more
models are compatible with the evidence (and
with each other), there can be reason to prefer
one of them and reject the others.

The  clarification  in  this  section  should
have shown that there is  more to falsification
than  just  “disconfirming”  a  hypothesis,  and
that  competition  between  models  can  be  re-
solved in different ways, not only in the way ex-
emplified  by  the  starfish  robot.  Furthermore,
different  types  of  sophisticated falsificationism
are part and parcel of predictive processing.

Does this mean that the Bayesian brain is
Popperian?  This  conclusion  would  be  prema-
ture. The above can at best show that there are
many situations in which the Bayesian brain is
a sophisticated falsificationist. But there may be
situations in which not even sophisticated falsi-
fication is possible or necessary. In the following
section, I will argue that predictive processing
also has Kuhnian aspects.

3.2 The Kuhnian Bayesian brain

According to Kuhn, scientific research develops
in different recurring phases. Most of the time,
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scientists work within an established paradigm,
in which implications of  theories  are explored
and puzzles are solved (cf. Kuhn 1962, ch. IV).
In  this  phase,  falsification  or  confirmation  do
not play a role:

Normal science does and must continually
strive to bring theory and fact into closer
agreement, and that activity can easily be
seen as testing or as a search for confirma-
tion or falsification. Instead, its object is
to solve a puzzle for whose very existence
the validity of the paradigm must be as-
sumed. Failure to achieve a solution dis-
credits only the scientist and not the the-
ory. (cf. Kuhn 1962, p. 80)

At  some stage,  however,  there  will  be  anom-
alies, i.e., empirical observations that cannot be
explained within  the current  paradigm.  When
these anomalies  accumulate,  scientists  will  try
to explore new concepts and methods. If, using
new  concepts  and  methods,  previously  unex-
plainable anomalies can be accounted for, a sci-
entific  revolution  can result,  through which  a
new paradigm is established. Kuhn shares the
sophisticated falsificationist’s insight that theor-
ies are never rejected in isolation:

[…] the act of judgment that leads scient-
ists to reject a previously accepted theory
is always based upon more than a compar-
ison of  that  theory with the world.  The
decision to reject one paradigm is always
simultaneously the decision to accept an-
other,  and the judgment leading to that
decision  involves  the comparison of  both
paradigms  with  nature  and with  each
other. (cf. Kuhn 1962, p. 77)

This shows that Kuhn’s theory is in some re-
spects in line with sophisticated falsificationism
—but he goes beyond it, in that he doubts that
a paradigm that  has been adopted instead of
another is always better or closer to the truth.
The reason for this is that he claims competing
paradigms to be incommensurable (cf. also Fey-
erabend 1962), which means that they typically
use radically different concepts and methods (cf.

Oberheim & Hoyningen-Huene 2013, §1). A new
paradigm that  becomes  dominant  is  thus  not
marked by being closer to the truth, but mainly
by  constituting  a  departure  from  the  old
paradigm (cf.  Kuhn 1962,  pp.  170-171).  This
seems to entail that scientific progress need not
be a process in which theories approximate the
truth to an ever higher degree.

Can we find an analogon for such a trans-
ition from one paradigm to the other in predict-
ive processing? Above, we saw that the sophist-
icated falsificationist assumes that scientific pro-
gress happens only when a theory makes new
predictions, and thereby leads to the discovery
of new states of affairs. This need not always be
the case in the Bayesian brain. When a model is
changed to minimize free-energy, this does not
mean that the empirical  content or predictive
power has been increased. A particularly clear
example of this can be found in perceptual phe-
nomena like binocular rivalry.

In  binocular  rivalry  (cf.  Blake &
Logothetis 2002),  subjects  are  presented  with
two different  images,  one to the  left  eye,  the
other to the right eye, e.g., a face and a house.
According to a  predictive  coding  account  put
forward by Jakob Hohwy, Andreas Roepstorff &
Karl Friston (2008),  the  brain  generates  two
main competing models of what the stimuli de-
pict,  one corresponding to the face,  the other
corresponding to the house. However, only one
of  these  models  is  consciously  experienced  at
any given time (although there can be intermit-
tent  phases in  which subjects  report  seeing  a
mixture of both stimuli, i.e., parts of the house
and parts of the face at the same time, but usu-
ally  non-overlapping).  This  means  that  the
brain will tend to settle into one of two classes
of states (one corresponding to perceiving the
house, the other to perceiving the face). Since
each of the models can only account for part of
the  visual  input,  both  cause  a  significant
amount  of  prediction  error  (cf.  Hohwy et  al.
2008, p. 691). Over time, the prior probability
of the currently assumed model (house or face,
respectively) will decrease, leading to a revision
of the hypothesis, until the brain settles into a
state  corresponding  to  the  other  percept,  at
least  temporarily  (cf.  Hohwy et  al. 2008,  pp.
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692–694).11 The crucial difference between this
and cases like the wet lawn example or model
selection in the starfish robot is that neither of
the two competing models is in any sense better
than the other (in terms of empirical content,
simplicity, predictive power, etc.).

We can recast binocular rivalry in terms
of Kuhnian paradigm changes. If we liken each
of the two models (house/face) to a paradigm,
we can say that perceiving a single object in
binocular rivalry corresponds to the phase of
normal  science,  in  which  many  phenomena
(inputs)  can  be  explained.  After  some time,
however, there are anomalies (increasing pre-
diction error), which leads to a scientific crisis
in  which  new  directions  are  explored  (inter-
mittent phase in which no unified percept is
generated), until a new form of scientific prac-
tice becomes dominant (scientific revolution),
and a new phase of normal science (temporar-
ily  stable  perception)  is  reached.  The  trans-
ition from one percept to the other does not
go along with increased veridicality: neither of
the two percepts  is  closer  to  the truth than
the other.12 This may also support the cyber-
netic idea that internal models are used in the
pursuit  of  homeostasis,  not  to  approximate
the truth (as also noted by  Seth this collec-
tion, p. 15).

There  is  another  analogy  between  the
Bayesian  brain  and Kuhn’s  theory of  science.
According to Kuhn, it is indeterminate whether
an anomaly (an unexpected experimental result,
for  instance)  is  something  that  should  be  re-
garded as just another puzzle or as a reason to
reject the whole paradigm:
11 Two  possible  reasons  why  the  probability  of  the  currently  as-

sumed model decreases are offered by the authors: either there is
a hyper-prior to the effect that the world changes (which is why
a static  hypothesis  becomes less  likely  over time),  or  there  are
random effects that lead to multistability, such that neural  dy-
namics switch from one basin of attraction to another (cf. Hohwy
et al. 2008, p. 692).

12 In  fact,  it  seems  that  the  notion  of  incommensurability  has
been  inspired  by  Gestalt  switches  (as  in  the  perception  of  a
Neckar cube), which are very similar to phenomena like binocu-
lar rivalry. However, Kuhn explicitly pointed out that there is a
crucial  difference  between  a  Gestalt  switch  and  a  paradigm
change: “[…] the scientist does not preserve the gestalt subject’s
freedom to switch back and forth between ways of seeing. Nev-
ertheless, the switch of gestalt, particularly because it is today
so familiar, is a useful elementary prototype for what occurs in
full-scale paradigm shift” (1962, p. 85). I am grateful to Sascha
Fink for drawing my attention to this statement.

Excepting  those  that  are  exclusively  in-
strumental, every problem that normal sci-
ence sees as a puzzle can be seen, from an-
other viewpoint, as a counterinstance and
thus as a source of crisis. (Kuhn 1962, p.
79)

If it is treated as a puzzle, it yields questions
like: how can we account for this phenomenon
within  our  established  framework?  If  it  is
treated  as  a  counterinstance,  a  more  funda-
mental solution is needed. This is analogous to
the fact that whether two models in predictive
processing  are  compatible  or  not  depends  on
(hyper)priors (cf.  FitzGerald et al. 2014, p. 2).
When a hyper-prior has it that two models are
incompatible, this can either lead to a competi-
tion, in which one of the models is eliminated,
or it can lead to a revision of the hyper-prior.
(Which  of  the  two  possibilities  corresponds
more to puzzle solving, and which to something
more fundamental will depend on whether the
lower-level  models  or  the  high-level  prior  ini-
tially have a higher probability.) This is illus-
trated by the RHI (rubber hand illusion).

In the RHI (Botvinick & Cohen 1998), the
brain harbors two contradictory sensory models.
According to the visual model, tactile stimula-
tion occurs on the surface of the rubber hand.
According to the proprioceptive model, the felt
strokes occur at a different location (i.e., where
the real hand is located). While there is, in and
of itself, no contradiction between these models,
it is likely that the brain has a prior that favors
common-cause explanations of  sensory signals.
Relative to this prior, there is a tension between
the models: they seem to indicate that the seen
stroking and the felt touch occur at distinct loc-
ations,  which is odd, because they occur syn-
chronously (and the prior has it that synchron-
ous effects have a common cause, which speaks
against two distinct locations). As Jakob Hohwy
puts it:

[...]  we  have  a  strong  expectation  that
there is a common cause when inputs co-
occur in time. This makes the binding hy-
pothesis  of  the  rubber  hand  scenario  a
better explainer, and its higher likelihood
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promotes it to determine perceptual infer-
ence  and  thereby  resolve  the  ambiguity.
(2013, p. 105)

Notice that the common-cause hypothesis (that
the touch is felt where it is seen) only becomes
the dominating hypothesis because the design of
the study prevents subjects from confirming the
distinct-causes  hypothesis  (e.g.,  by  looking  at
their real hands). Because of the common-cause
hypothesis,  there  is  an  ambiguity  in  the  per-
cepts. This ambiguity can be resolved in at least
two  ways:  either  by  adjusting  the  lower-level
(perceptual) models (to the effect that the felt
touch occurs at the same location as the seen
stroking); or by active inference (which in this
case would lead to a rejection of the higher-level
model corresponding to the common-cause hy-
pothesis). The first way corresponds to puzzle
solving, the second more closely to a paradigm
change.  Note  that  the  analogy  will  be  the
stronger  the  more  remote  the  hyper-prior  is
from the perceptual models.

I  hope to have shown that the Bayesian
brain has aspects  that  make it  Popperian,  as
well as aspects that make it Kuhnian. At the
very  least,  it  should  have  become  clear  that
falsification is a more complex concept than de-
picted in Seth’s target paper (which seems to
tend towards a more naïve form of falsification-
ism).

4 Perceptual presence

We have seen how fruitful analogies between PP
and  theory  of  science  can  be.  As  mentioned
above,  an  early  formulation  of  the  analogy
between perception and hypothesis-testing can
be  found in  Richard  Gregory’s  seminal  paper
“Perceptions  as  Hypotheses”.  There,  we  also
find the suggestion that percepts  explain sens-
ory signals (cf. Gregory 1980, p. 13).13

How far can we take the analogy between
explanation in perception and explanation in
science? If we know what a good explanation
is in science, does this give us a clue to the
conditions  under  which  percepts  are  experi-
13 It  should  be  noted  that  Gregory ascribes  “far  less  explanatory

power” (1980, p. 196) to perceptions than to scientific hypotheses.

enced as real? Interestingly, there are accounts
of scientific explanation that assign an essen-
tial  role  to  counterfactual  knowledge  (cf.
Waskan 2008).  If  someone purports  to  know
why a certain event happened or why a phe-
nomenon was observed, we expect her to also
be able to tell us what would have happened if
some of the initial conditions had been differ-
ent.  Similarly,  when  the  Bayesian  brain  ex-
plains sensory signals by inferring their hidden
causes, we would expect the brain’s generative
model  to  also  have  the  resources  to infer  in
what ways sensory signals would be different,
had  there  been  a  change  to  their  hidden
causes.

This highlights the relevance of counter-
factual models. Seth points out that counter-
factuals play a crucial role in active inference.
The consideration above may be another way
to show the relevance of counterfactual mod-
els. Furthermore, it also highlights the useful-
ness  of  counterfactual  richness.  The richer  a
counterfactual  model  of  hidden  causes,  the
better the brain’s explanation of sensory sig-
nals (all other things being equal). In general,
we may also be inclined to say that the richer
the counterfactual model, the higher the con-
fidence that it helps track the real explanation
of sensory signals. But does this mean it goes
along with experienced realness (or perceptual
presence)?

This is,  basically,  what Seth proposes in
his PP account of perceptual presence (cf. Seth
2014). But what is perceptual presence in the
first place? On the one hand, Seth characterizes
the  notion  by  contrasting  examples.  For  in-
stance, objects like a tomato possess perceptual
presence,  whereas afterimages do not.  On the
other hand, Seth provides the following charac-
terization:

In  normal  circumstances  perceptual  con-
tent is characterized by subjective veridic-
ality; that is, the objects of perception are
experienced  as  real,  as  belonging  to  the
world. When we perceive the tomato we
perceive it as an externally existing object
with a back and sides, not simply as a spe-
cific view […]. (2014, p. 98)
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The tomato is not perceived as a flat, red disc.
Although you do not see the back and sides of
the tomato in the same way that you see the
front, there is  still  a sense in which both are
perceptually  present (cf.  Noë 2006,  p.  414).  I
shall now point to two ambiguities in Seth’s de-
scription of the explanandum. This calls for a
conceptual clarification, regarding which I shall
make a tentative suggestion. After that, I shall
argue  that  there  may  be  possible  counter-
examples to Seth’s hypothesis  that perceptual
presence correlates with the counterfactual rich-
ness of generative models.

4.1 Ambiguities in Seth’s description of 
the explanandum

The tomato is not only experienced as percep-
tually present, it is also perceived as an  object
in the external world. In a commentary on Seth,
Tom Froese (2014, p. 126) has therefore sugges-
ted that Seth conflates perceptual presence with
experienced objecthood. This proposal has some
plausibility, because the tomato is perceived as
a real object, whereas afterimages are not ex-
perienced  as  objects  (they  are  more  like  un-
stable colored shades). After all, even Seth ad-
mits,  in his target paper, that it may be im-
portant to distinguish presence from objecthood
(p. 18). This is one way in which Seth’s defini-
tion of the explanatory target is ambiguous: is
it  about  experienced  presence  or  experienced
objecthood (cf. also Seth 2014, pp. 105f.)? (This
question becomes more pressing still  when we
consider the ethymology of “realness” or “real-
ity”: the Latin origin of the word is res (thing),
which  makes  it  a  little  confusing  that  Seth
seems to identify perceptual presence with the
sense of subjective reality, cf.  Seth this collec-
tion, p. 2.)

Another ambiguity is related to the notion
of a counterfactual model. In his target paper
Seth defines a counterfactual model as a model
encoding “how sensory inputs (and their expec-
ted precisions) would change on the basis of a
repertoire of possible actions” (Seth this collec-
tion p. 17). On the one hand, one may ask if
counterfactual  models  in  the  brain necessarily
encode SMCs (sensorimotor contingencies). For

the perception of a ripe tomato on a bush, it
might be equally relevant to encode how sens-
ory  signals  pertaining  to  the  tomato  would
change if the wind were to blow the bush or if
the  tomato  were  to  fall  down.  On  the  other
hand, it is unclear how explicit a counterfactual
representation has to be.  Jakob Hohwy (2014)
suggests that a rich causal structure could be
modeled  by  extracting  higher-order  invariants
(features that do not change if  the tomato is
dangling in the wind or has fallen down, for in-
stance).  Higher-order  invariants  are  relatively
perspective-independent.14 The degree of percep-
tual  presence  would  then  correspond  to  the
“depth of the inverted model”15 (Hohwy 2014, p.
128). In his target paper, Seth notes that the
depth of the model may indeed play a role (see
footnote 13).

Two ambiguities are thus to be found in
Seth’s account. One concerns the characteriza-
tion  of  the  target  phenomenon  (experienced
realness versus  experienced  objecthood).  The
other lies in the description of the represented
causal structure:  counterfactual richness versus
perspective-independence of  hidden  causes.
Counterfactual richness and causal “depth” are
not completely independent. Below, I will give
some examples that may be useful to explore
the  relationship  between  these  two  features.
Furthermore,  I  will  suggest  that  it  could  be
helpful to consider another feature with respect
to which the represented causal structure of ob-
jects  may vary.  This  feature  is  the  degree  of
14 As I am using the term here, the depth of a model can be measured

by  its  location  in  the  predictive  processing  hierarchy  (that  is,
whether it is high or low in the hierarchy). Estimates at higher levels
track features that change more slowly (i.e., features that remain in-
variant when things change, for instance, when the subject changes
her  perspective on  a  perceptual  object  like  a  tomato  by  walking
around the tomato or by turning it—hence the term “perspective-
(in)dependence”). A model of a perceived object is deep when it rep-
resents  features  that  change  relatively  slowly.  Alternatively,  one
could stipulate that a model is deep when it represents features that
change slowly  and features that change more quickly. In fact, this
may come closer to what Hohwy has in mind, but it blurs the dis-
tinction between perspective-dependence and causal integration. Ho-
hwy writes: “[c]oncurrents are causes that do not interact on their
own with other causes (presumably a fence won’t occlude a concur-
rent)” (2014, p. 128). But encapsulated causes can be represented
both at lower parts of the hierarchy (possible example: afterimages)
and at higher parts of the hierarchy (possible example: certain con-
scious thoughts). This suggests that at least causal encapsulation can
be dissociated from perspective-dependence and -independence.

15 The inverted model is the posterior distribution, the computation of
which is based on the likelihood and the prior (see above).
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causal  encapsulation.  For  representations  not
only differ with respect to their counterfactual
richness or their degree of perspective-depend-
ence,  but  also  with  respect  to  the  extent  to
which the represented causal structure is encap-
sulated or integrated. (In what follows,  I  will
use the notion of a counterfactual model mainly
in the sense in which Seth uses it: counterfac-
tual models in this sense involve representations
of possible bodily actions by the subject of ex-
perience.)

A phenomenal representation of a tomato
on a plate is not only counterfactually rich and
relatively  perspective-dependent,  the  represen-
ted causal structure is also causally integrated.16

It is, for instance, represented as being causally
related to the plate, because it is experienced as
lying  on the plate (that is, it  is  not hovering
above it). Furthermore, it is in possible causal
contact with virtually all other objects in its vi-
cinity (e.g., the subject’s hands).

Contrast this with the experience of what
is happening in a classical video game—say, a
racing game. The player influences how the im-
ages on the two-dimensional screen change, be-
cause she has control over the vehicle. Hence,
we can assume that representations of gaming
sequences are (usually) counterfactually rich. At
the  same  time,  they  are  also  perspective  de-
pendent (although they mainly depend on the
virtual perspective from which objects are rep-
resented in the game). However, virtual objects
in the game are experienced as causally encap-
sulated: although objects can interact with each
other in the virtual world, they do not interact
with most other parts of the player’s environ-
ment. For instance, they will never break out of
the screen and fly around in the room in which
the player is sitting. Furthermore, they can only
be influenced vicariously through a controller or
keyboard. Thus there is  not causal encapsula-
tion in  every respect (the virtual world is not
experienced as completely disambiguated from
the rest of the experienced world), but in some
respects the encapsulation is rather strong (the
16 Another possible term for this would be causally open, in the sense

that  it  is  represented as  being  in  potential  causal  exchange  with
other objects in its surrounding. By integration, I thus do not mean
integration  within (or  internal  integration),  but  integration  with
other objects.

virtual world is spatially bounded, e.g., with the
screen  as the limit).  Note that  many modern
video games are less causally encapsulated, for
instance when they are played on a touchscreen
(or on devices with a three-dimensional screen,
or in an immersive virtual reality).17

As  mentioned  above,  causal  integration
and counterfactual richness are not completely
independent.  High  counterfactual  richness  im-
plies a certain degree of causal integration (at
least  in  some respects),  for  it  means  that  at
least the subject can interact with the experi-
enced  object  in  some  way—regardless  of  how
separate  the  represented  causal  structure  is
from the rest of the subject’s surroundings.

Similarly, highly perspective-invariant rep-
resentations typically also involve the represent-
ation of an encapsulated causal structure. Ab-
stract conscious thoughts, for instance, cannot
be touched with the hand or other concrete ob-
jects. However, the implied encapsulation only
holds in some respects. Sometimes thoughts can
evoke strong emotions or a sequence of mental
imagery.  In  certain  obsessive-compulsive  dis-
orders,  for  instance,  subjects  will  first  have a
thought  (“My  hands  are  dirty”),  presumably
followed by a feeling of disgust and the urge to
wash the hands, which then leads to motor be-
havior (washing the hands); this, in turn, may
be followed by the thought that the hands are
still dirty. The content of the conscious thought
is relatively perspective-invariant, and yet it in-
volves,  presumably,  representations  of  causal
structure that link it to concrete objects in the
world.

As  long  as  we  interpret  counterfactuals
only as representations of sensorimotor contin-
gencies,  it  may also seem that  perspective-in-
variant18 representations  are  counterfactually
poor. However, if we include representations of
possible mental actions and their effects, we can
also conceive of  counterfactually-rich perspect-
ive-invariant  representations.  A  possible  ex-
ample is a philosophical argument or a theory,
which someone can contemplate in their mind,
being aware that there are several possible ways

17 Thanks to Jennifer Windt for suggesting immersive video games as a
further example.

18 Perspective-invariant representations are maximally perspective-independent.
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in which the argument could be probed and at-
tacked, or several important cases to which the
theory could be applied.

Bearing in mind that the degree of causal
encapsulation is not completely independent from
the other two dimensions (counterfactual richness
and perspective-invariance), we can depict differ-
ent  types  of  conscious  experiences  in  a  cube,
where the three axes stand for the three dimen-
sions described (see Figure 1). The most interest-
ing locations in this cube are, of course, its eight
corners, because they depict classes of experiences
for which each of the three features is either com-
pletely absent or maximally pronounced. Finding
examples  of  these “extremal experiences”  is  no
easy task.19 Even neural representations of synes-
thetic concurrents, Seth’s prime example of coun-

19 In fact, it may be that the corners only constitute hypothet-
ical  endpoints.  Thanks  to  Jennifer  Windt  for  pointing  this
out.

terfactually poor models, may, at first sight, seem
to be located somewhere in the middle of the per-
spective-dependence axis.

Grapheme-color  concurrents,  for  in-
stance,  are  not  simply  triggered  by  graphic
representations of glyphes, but by representa-
tions of abstract objects, i.e., graphemes, asso-
ciated with certain glyphes (cf. Mroczko et al.
2009).  Hence,  it  may  seem  that  the  hidden
cause of the concurrent is not simply an ob-
ject in the world, but also involves an abstract
object, i.e., a grapheme, the representation of
which  is  perspective-invariant.  This  would
suggest  that  synesthetic  concurrents  cannot
conclusively  be  placed  in  one  of  the  cube’s
corners,  because  their  represented  hidden
causes involve very high-level invariants.

On the other hand, one could object that
the concurrent itself is represented in a rather
perspective-dependent way. It may be part of a
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Figure 1: The figure illustrates how classes of experiences can be located in a cube, according to the extent to which
they display counterfactual richness, perspective-independence, and causal integration (see main text for explanations).
The cube (without the labels) is adapted from cube figures in Godfrey-Smith (2009); talks by Daniel Dennett brought
this style of illustration to my attention.
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causal network involving hidden causes that are
represented  in  perspective-invariant  ways,  but
the synesthetic percept itself is not a represent-
ation of an abstract hidden cause.20 Hence, on
second thought, it seems that concurrents, as in
grapheme-color synesthesia, are in fact located
close to the origin of our coordinate system: the
representations involved are relatively perspect-
ive  dependent,  and  they  are  counterfactually
poor. At the same time, they are causally en-
capsulated, because they do not interact with
physical objects (they cannot be touched, etc.).

4.2 Does counterfactual richness 
correlate with perceptual presence (or
objecthood)? 

What does this tell us about experienced “pres-
ence”  or  “objecthood”?  Are  all  examples  of
counterfactually rich representations in the cube
perceptually  present,  or  are  they  associated
with a high degree  of  objecthood? If  so,  this
would support Seth’s hypothesis that counter-
factual richness correlates with perceptual pres-
ence (or objecthood). I believe that counterfac-
tual richness can be dissociated both from per-
ceptual presence and from objecthood. Olfact-
ory  experiences  are,  as  argued  by  Michael
Madary (2014), both counterfactually poor and
perceptually present.  This suggests that coun-
terfactual richness does not correlate with per-
ceptual presence. Similarly, experiences of clas-
sical video game sequences are counterfactually
rich,  but  involve  a  low  degree  of  perceptual
presence; objects in the game are only experi-
enced  as  virtual  objects,  not  as  real  objects.
Counterfactual richness and perceptual presence
may therefore be doubly dissociable.

Trying to evaluate whether counterfactual
richness correlates with phenomenal objecthood
would presuppose that we know what phenom-
enal objecthood means. As I only have an intu-
itive grasp of what it means, I can only give a
preliminary statement. To me, it seems that vir-
tual objects in two-dimensional video games do
not possess a high degree of phenomenal object-
hood. But then again, even if a virtual tomato
20 This may point to an aspect regarding which Hohwy‘s characteriza-

tion of causal depth is ambiguous.

could be  manipulated in  various  ways with a
controller,  the  corresponding  representation
would probably not be as counterfactually rich
as a representation corresponding to the experi-
ence of a real tomato. Hence, it is difficult to
arrive at a definitive verdict.

A more promising path may involve  the
experience of objects in asomatic OBEs (out-of-
body  experiences)  or  asomatic  dream  experi-
ences (Windt 2010;  Metzinger 2013). Counter-
factuals, as conceived of by Seth, always involve
action on the part of a subject. Most, if not all,
(non-mental) actions involve the body, so rep-
resenting  counterfactuals  involves  representing
(parts of) the body. In asomatic OBEs and aso-
matic  dream  experiences,  subjects  do  not
identify with a body, but with an unextended
point in space. I speculate that in such cases,
representations of objects are less counterfactu-
ally rich.21 This, however, does not necessarily
mean that they are experienced as less present
or as possessing less objecthood. There are still
a lot of causal regularities involving external ob-
jects  that  may  be  tracked  by  models  in  the
brain, even in the absence of an ordinary body
representation.  External  objects  can  interact
with each other, and counterfactual representa-
tions of possible causal processes may contrib-
ute to the experience of objecthood or percep-
tual presence. In particular, this is to be expec-
ted if none of the external objects are represen-
ted as causally encapsulated. If this bears out,
it provides another reason to believe that coun-
terfactual  richness  of  generative  models  does
not correlate with experienced objecthood. Let
us now consider possible examples of other ex-
tremal experiences (in the corners of the cube)
to investigate whether it is plausible to hypo-
thesize that represented causal depth or causal
encapsulation  correlates  with  perceptual  pres-
ence or objecthood.

The  more  perspective-invariant  a  repres-
entation,  the  more  abstract  it  is.  This  also
means that perspective-invariant representations
typically involve an encapsulated causal struc-
ture.  Thinking  about  a  simple  equation  like

21 In fact, asomatic OBEs may be a better example than asomatic dream ex-
periences, since such dreams typically lack concrete objects (cf. LaBerge &
DeGracia 2000). I am grateful to Jennifer Windt for pointing this out.
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“1+1=2” may be an example of this. There is
no way in which the target of this representa-
tion can causally interact with the window be-
hind my desk or the red bottle in front of the
window.  Furthermore,  most  (or  all)  bodily
movements will not influence the way I experi-
ence the thought that one plus one equals two.
Hence,  it  is  arguably  also  a  counterfactually
poor representation. 

When  we  move  up,  in  the  direction  of
counterfactually  rich  phenomenal  representa-
tions,  we  arrive  at  representations  that  are
counterfactually rich, perspective-invariant, and
still causally encapsulated. Above, I mentioned
conscious  thoughts  about  philosophical  argu-
ments  or  theories  as  possible  examples.  Such
thoughts may involve mental imagery and inner
speech, and perhaps even complex phenomenal
simulations involving counterfactual situations.
It is not obvious whether it makes sense to say
that such thoughts involve counterfactual rep-
resentations linking possible mental actions to
their effects. This is even harder without pre-
supposing a developed theory of mental action
(for  recent  proposals,  cf.  Proust 2013;  Wu
2013).

Mental actions are goal-directed. Perform-
ing a mental action may therefore, at least in
some cases, be followed by a representation of a
situation in which the goal is realized (one pos-
sible example might be: remembering a name;
represented  situation:  telling  someone  the
name). In the case of a theory, a mental action
could be considering whether a certain claim is
true or  not  (or  whether  it  is  plausible).  This
may trigger thoughts like: “Assuming this is the
case,  what  implications  would  this  have?  Are
these  implications  plausible,  or  likely  to  be
true? Are there  possible  counterexamples?”  It
might  also  involve  trying  to  formulate  some-
thing more clearly.

Furthermore, thinking about a theory or
problem  may  involve  conscious  counterfactual
thoughts of the form “If I gave up this assump-
tion, there would not be a contradiction among
the remaining hypotheses anymore”, or “If the
theory  could  account  for  this  special  case,  it
would be strengthened”. One difference to con-
scious perception of concrete objects is, presum-

ably, that such counterfactuals are  phenomen-
ally represented,  whereas  representations  of
SMCs are usually unconscious (and may impact
on consciousness only indirectly).

Similar things apply to conscious thoughts
about non-trivial mathematical expressions. For
instance, if a mathematician sees the expression
(1 + x/n)n she will probably think “If  n tends
to infinity, this expression will  converge to  ex.
Now, suppose the mathematician is investigat-
ing the asymptotic  behavior  of  some complic-
ated  expression  (e.g.,  she  wants  to  find  out
what happens to a certain expression when  n
tends to infinity). While manipulating the terms
on paper, she suddenly realizes that one factor
contained  in  the  expression  is  (1 + x/n)n.  As
she is using pen and paper while thinking this,
her brain will not only activate an abstract (but
conscious) counterfactual thought, but probably
also a representation of SMCs. These SMCs will
involve taking the limit of the expression with
which she started (i.e.,  lim n→∞), and this is
now not only a mental action, but also a pos-
sible bodily action. She could write this down,
and know that (if  the limit exists)  part of  it
would  be  ex.  Her  mathematical  investigation
therefore involves:

• phenomenal  representations  regarding  coun-
terfactual mental actions;

• representations  of  SMCs (embodied versions
of the above mentioned counterfactuals);

• a close coupling between writing, perceiving,
and thinking.

The third point is especially important, because
it  suggests  that  for  a  mathematician  working
with pen and paper (or chalk and blackboard)
the objects  of  her conscious thoughts are not
causally  encapsulated  anymore.  The  causal
structure represented while thinking about ab-
stract  concepts is  intertwined with the causal
structure represented while  looking at  written
mathematical  expressions.  These  causal  rela-
tions are still relatively limited, but if the math-
ematician is completely absorbed in her work,
the paper (or blackboard) may be all she is at-
tending to in her environment at the moment,
perhaps to the extent that she does not experi-
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ence abstract relations represented by her notes
as causally encapsulated anymore. It is conceiv-
able that this aspect can be enhanced in virtual
environments in which mathematical objects are
not represented by writing on paper or black-
board, but by three-dimensional virtual objects
that can be manipulated by touch or manual
movements, for instance.22 Contrary to what one
might at first think, there may thus be cases in
which high-degrees of perspective-invariance go
along  with  both  counterfactual  richness  and
high degrees of causal integration.

Another  class  of  abstract  thoughts  that
may be experienced as causally integrated could
be obsessive thoughts, like the thought that one’s
hands  are  contaminated  with  germs.  Such
thoughts  may  be  triggered  by  specific  events
(like touching a door knob) and may go along
with a fear of getting sick (because of the con-
tamination).  Subjects  may  also  try  to  avoid
touching objects that they fear might be contam-
inated. The reason for this is  that the hidden
cause represented by the obsessive thought, i.e.,
potential germ contamination, is not causally en-
capsulated. It is causally connected to concrete
objects in the subjects’ environment: things that
are perceived as contaminated can cause a con-
tamination of the hands; on the other hand, con-
taminated hands can infect other objects with
germs.  Furthermore,  the  inferred  hidden cause
(germ contamination) is relatively perspective-in-
variant. Subjects arguably do not imagine bac-
teria crawling on their hands, although the ob-
sessive  thought may go along with  an  altered
perception of the hands. Finally, the model in-
volved is probably counterfactually poor, as most
actions do not change the alleged contamination
(with  the  possible  exception  of  washing  the
hands  or  touching  allegedly  contaminated  ob-
jects; but here, the counterfactual effect is prob-
ably just an increase or decrease in the acuteness
of the felt contamination). Therefore, I list ob-
sessive thoughts as candidate examples of coun-
terfactually  poor,  perspective-invariant  repres-
entations the contents of which are represented
as causally integrated.

22 This could be a case in which there is a particularly strong demand for
the general ability of PP to combine “fast and frugal solutions” with
“more structured, knowledge-intensive strategies” (Clark this collection).

4.3 Do perspective-invariance or 
represented causal integration 
correlate with perceptual presence (or
objecthood)?

The examples given are certainly not uncontro-
versial and perhaps not all of them can be sus-
tained  in  the  light  of  further  research.  But
hopefully the cube can still fulfill heuristic pur-
poses, and can illustrate the need to clarify the
relations  between counterfactual  richness,  per-
spective-dependence,  and  causal  integration.
But assuming that the examples given are loc-
ated  in  roughly  the  right  places  within  the
cube, what does this tell  us about perceptual
presence  or  experienced  objecthood? Above,  I
dismissed Seth’s hypothesis that counterfactual
richness correlates with either presence or ob-
jecthood. Let us now briefly consider perspect-
ive-invariance  and  causal  integration.  If  con-
scious  thoughts  involve  causally-deep  models
(that  represent  perspective-invariant  features),
then it seems that the depth of the represented
causal  structure does  not  correlate  with pres-
ence or objecthood. The thought that one plus
one equals two does not possess a high degree of
objecthood  or  perceptual  presence.  Hence,  it
seems that Hohwy’s hypothesis that the depth
of the generative model (the degree of perspect-
ive-independence) correlates with objecthood or
presence should be dismissed as well.  But the
remaining  candidate,  causal  integration,  does
not unequivocally correlate with either presence
of  objecthood  (if the  examples  I  gave  make
sense). The represented causal structure in ob-
sessive thoughts need not be encapsulated, and
still they are probably not accompanied by ex-
perienced  objecthood  or  perceptual  presence.
Perhaps this shows that one ought first to cla-
rify whether it even makes sense to talk about
the  phenomenology  of  objecthood  or  presence
with respect to conscious thoughts.

4.4 How does perception change when 
new sensorimotor contingencies are 
learnt?

Another relevant question is whether increasing
the degree of counterfactual richness, causal integ-
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ration, or causal depth of a model just modifies
(or  enriches)  the  inferred  hidden  causes,  or
whether it leads to the perception of a new, pos-
sibly more abstract  object.  This  relates  to  the
question  raised  in  the  target  paper,  namely
whether a person who is highly familiar with an
object perceives it as more real (because she has
mastery of more SMCs) than other persons (Seth
this collection, p. 18). Interestingly, research on
learning new SMCs tentatively suggests that it
leads to the perception of new (more abstract)
objects.

Under the lead of Peter König, cognitive sci-
entists from Osnabrück have, in recent years, de-
veloped a compass belt that indicates to the per-
son wearing it (while moving) changes in direc-
tions (cf.  Kaspar et al. 2014). The aim of this
project (called feelspace) is to study how percep-
tion in new sensory modalities can be enabled by
sensory augmentation.23 The belt (see  Figure 2)
contains several vibrators, which always signal the
direction of magnetic north. Subjects who wear
the belt for a couple of weeks learn new SMCs,
e.g., related to how the vibrating signals change
when they turn around. A straightforward applic-
ation of  Seth’s PPSMCT suggests that the in-
creased counterfactual richness simply goes along
with  an  increased  perceptual  presence  (for  the
belt, or the vibrations, or the hip / waist, etc).
But the authors of the study cited report that
perception changes in different ways:

Initially the signal was predominantly per-
ceived as tactile evolving to being perceived
as location and direction information. Over
time,  the perception of  tactile  stimulation
receded  more  and  more  into  the  back-
ground.  Instead  the  subjects’  reports  fo-
cused more on changes in spatial perception.
Furthermore, two months after the end of
belt wearing the effects subjects reported –
at least in the FRS questionnaire – dimin-
ished. (Kaspar et al. 2014, p. 59)

What changes is not just that SMCs for
tactile stimulation on the skin where the belt is
worn are learnt, but that these are connected to
23 For more information on the project, see: http://feelspace.cogsci.uni-

osnabrueck.de/ 

more  abstract  information  (regarding  location
and direction). This also makes sense in com-
parison  with  other  sensory  modalities.  Know-
ledge of auditory SMCs, for instance, does not
increase the perception of the inner ear. When
the brain learns the relevant SMCs, it thereby
learns about the hidden causes of signals in the
inner ear. In fact, this may be another reason to
believe that counterfactual richness goes along
with phenomenal objecthood.

This  also  suggests  that  when  someone  is
more  familiar  with  an  object,  the  object  itself
need not become more real, but its connections to
other objects might. The causal network in which
it is embedded becomes more real. Perhaps the
subject  also  experiences  more  abstract  objects
(corresponding to higher-level invariants).

All in all, I hope the examples given illus-
trate the need to provide a conceptually clearer
account of counterfactual richness, causal depth,
and  causal  integration.  For  at  the  moment  it
seems that they are too entangled to allow us to
assess  their  potential  relevance  for  experienced
objecthood or presence in a rigorous way. Fur-
thermore,  it  will  be  crucial  to  investigate  how
phenomenal  properties  are  affected  when  there
are  changes in these three features (e.g.,  when
counterfactual richness or causal integration is in-
creased  or  decreased  in  a  controlled  way in  a
study).

5 Conclusion

I  have  tried  to  show  that  useful  analogies
between PP accounts and classical ideas in the-

Wiese, W. (2015). Perceptual Presence in the Kuhnian-Popperian Bayesian Brain - A Commentary on Anil K. Seth.
In T. Metzinger & J. M. Windt (Eds). Open MIND: 35(C). Frankfurt am Main: MIND Group. doi: 10.15502/9783958570207 17 | 19

Figure 2: The figure shows two versions of the feelspace
belt. (a) The original version used in Nagel et al. (2005).
(b) The current version used in Karcher et al. (2012) and
Kaspar et al. (2014). Images used with kind permission of
Peter König.
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ory  of  science  run  deeper  than  portrayed  in
Seth’s target paper. Based on such analogies, I
have argued that a proper treatment of active
inference needs to be more sophisticated than
Seth’s threefold distinction. In particular, Seth
blurs a whole range of  ways in which models
can be falsified.

Furthermore, I have suggested that Seth’s
predictive  processing  account  of  perceptual
presence  may profit  from taking  not  just  the
counterfactual  richness  of  generative  models,
but also their degree of perspective-dependence
and their causal encapsulation into account (as
mentioned above, this suggestion is inspired by
Jakob Hohwy’s work). I have proposed a way in
which  examples  of  possible  combinations  of
these features can be explored, which may serve
as a useful tool for future research.

Thomas Kuhn (1962,  p.  88)  writes  that
“normal  science  usually  holds  creative  philo-
sophy at arm’s length, and probably for good
reasons”. I thus hope that research on predictive
processing  and  consciousness  has  not  yet
reached  the  phase  of  normal  science,  so  that
this commentary can still make a humble con-
tribution.
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Responding to Wanja Wiese’s incisive commentary, I  first develop the analogy
between predictive  processing  and scientific  discovery.  Active  inference in  the
Bayesian brain turns out to be well characterized by abduction (inference to the
best explanation), rather than by deduction or induction. Furthermore, the em-
phasis on control highlighted by cybernetics suggests that active inference can be
a process of “inference to the best prediction”, leading to a distinction between
“epistemic”  and  “instrumental”  active  inference.  Secondly,  on  the  relationship
between perceptual presence and objecthood, I recognize a distinction between
the “world revealing” presence of phenomenological objecthood, and the experi-
ence of “absence of presence” or “phenomenal unreality”. Here I propose that
world-revealing presence (objecthood) depends on counterfactually rich predictive
models that are necessarily hierarchically deep, whereas phenomenal unreality
arises when active inference fails to unmix causes “in the world” from those that
depend on the perceiver. Finally, I return to control-oriented active inference in
the setting of interoception, where cybernetics and predictive processing are most
closely connected.
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1 Introduction

It  is  a pleasure to respond to  Wanja Wiese’s
stimulating commentary (this collection), from
which I learned a great deal. Much of what he
says stands easily by itself, so here I select just
a few key points which warrant further develop-
ment in light of his analysis.

2 Active inference and hypothesis testing

A central claim in my target paper is that act-
ive inference, typically considered as the resol-
ution of sensory prediction errors through ac-
tion, should also (perhaps primarily) be con-
sidered as furnishing disruptive and/or disam-

biguatory evidence for perceptual hypotheses.
This  claim  transparently  calls  on  analogies
with hypothesis testing in science (as well as
on counterfactually-equipped generative mod-
els), and so invites comparisons with theoret-
ical  frameworks  for  scientific  discovery,  as
Wiese  nicely  develops.  In  particular,  Wiese
notes that I do not “say much about what it
takes  to  disconfirm  or  falsify  a  given  hypo-
thesis or model”, inviting me to “provide a re-
fined treatment of the relation between falsi-
fication and active inference” (this collection,
p. 2). This is what I shall attempt in this first
section.
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2.1 The abductive brain

Wiese rightly says that a strict Popperian ana-
logy for active inference is inappropriate since
Popperian falsification relies on hypotheses that
are  derived  deductively.  Deductive  inferences
are  necessary  inferences,  meaning  that  their
falsification in turn falsifies the premises (theor-
ies) from which they derive. Active inference in
the Bayesian brain is not deductive for two im-
portant reasons. First, as Wiese notes, Bayesian
inference is inherently probabilistic so that com-
peting hypotheses  become more or  less  likely,
rather than corroborated or falsified. Probabil-
istic weighting of hypotheses suggests a process
of  induction rather  than  deduction.  Inductive
inferences are  non-necessary  (i.e., they are not
inevitable consequences of  their  premises) and
are assessed by observation of outcome statist-
ics,  by analogy with  classical  statistical  infer-
ence. Second, Bayesian reasoning pays attention
not just to outcome frequencies but to proper-
ties  of  the  explanation  (hypothesis)  itself,  as
captured by the slogan that (Bayesian) percep-
tion is the brain’s “best guess” of the causes of
its  sensory  inputs.  This  indicates  that  the
Bayesian brain is neither deductive nor induct-
ive but  abductive (Hohwy 2014), where abduc-
tion is typically understood as “inference to the
best explanation”. In Bayesian inference, what
makes a “best” explanation rests not only on
outcome frequencies, but also on quantification
of model complexity (models with fewer para-
meters are preferred), and by priors, likelihoods,
as well as hyper-priors which may make some
prior-likelihood  combinations  more  preferable
than  others.  Importantly,  abductive  (and  in-
ductive) processes are ampliative, meaning that
they are capable of going beyond that which is
logically entailed by their premises. This is im-
portant  for  the  Bayesian  brain,  because  the
fecundity  and  complexity  of  the  world  (and
body) requires a flexible and open-ended means
of adaptive response.

So,  the  Bayesian  brain  is  an  abductive
brain. But I would like to go further, recalling
that active inference enables predictive  control
in addition to perception. This emphasis is par-
ticularly clear in the parallels with cybernetics

and applications to interoception developed in
the  target  article,  where  allostasic1 control  of
‘essential  variables’  is  paramount,  and  where
predictive  models  are  recruited  towards  this
goal Conant & Ashby 1970; Seth 2013). In this
light, active inference in the cybernetic Bayesian
brain  becomes  a  process  of  “inference  to  the
best  prediction”,  where  the  “best”  predictions
are those which enable control and homeostasis
under a broad repertoire  of  perturbations.2 It
will be interesting to fully develop criteria for
“best-making” in this  control-oriented form of
abductive inference.

2.2 Sophisticated falsificationism, active 
inference, and model disambiguation

Where does this leave us with respect to theor-
ies of scientific discovery? Strict Popperian falsi-
fication was already discounted as an analogy
for active inference. At the other extreme, par-
allels with Kuhnian paradigm shifts also seem
inappropriate since these are not based on infer-
ence whether deductive, inductive, or abductive.
Also,  such  shifts  are  typically  unidirectional:
having  dispensed  with  the  Copernican  world-
view once, we are unlikely to return to it in the
future. These two points challenge Wiese’s ana-
logy  between  paradigm  shifts  and  perceptual
transitions  in  bistable  perception  (see  Wiese’s
footnote  12,  this collection,  p.  9).  What  best
survives in  this  analogy is  an appeal  to hier-
archical inference, where changes in “paradigm”
correspond to  alternations  between hierarchic-
ally  deep  predictions,  each  of  which  recruit
more fine-grained predictions which themselves
each explain only part  of  the ongoing sensor-
imotor flux, under the hyper-prior that percep-
tual  scenes must be self-consistent (Hohwy et
al. 2008).

Wiese himself seems to favour Lakatos’ in-
terpretation of Popper, a “sophisticated falsific-
ationism”  where  theories  (perceptual  hypo-
theses)  can  be  modified  rather  than  rejected
outright,  when  predictions  are  not  confirmed,
1 Allostasis: the process of achieving homeostasis.
2 There is an interesting analogy here to the overlooked “perceptual

control theory” of William T. Powers, which says that living things
control their perceived environment by means of their behavior, so
that perceptual variables are the targets of control (1973).
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and where hypotheses are not tested in isolation
(more on this later). As Wiese shows, sophistic-
ated falsification fits well with some aspects of
Bayesian  inference,  like  model  updating.  Ac-
cording  to  Lakatos,  core  theoretical  commit-
ments can be protected from immediate falsific-
ation  by  introducing  “auxiliary  hypotheses”
which account for otherwise incompatible data
(1970). The key criterion - in the philosophy of
science sense - is that these auxiliary hypotheses
are  progressive in  virtue of  making additional
testable predictions, as opposed to  degenerate,
which  is  when the  core  commitments  become
less testable.3 This maps neatly to counterfactu-
ally-equipped active inference, where hierarchic-
ally  deep  predictive  models  spawn  testable
counterfactual  sensorimotor  predictions  which
are selected on the basis of precision expecta-
tions,  and  which  lead  to  effective  updating
(rather than “falsification”) of perceptual hypo-
theses. As Wiese notes, a good example of this
is given by Friston and colleagues’ model of sac-
cadic  eye  movements  (Friston et  al. 2012).
When it comes to model comparison, sophistic-
ated  falsification  may even approximate  some
aspects  of  abductive  inference:  “Explaining
away is another example of sophisticated falsi-
fication.  Even  when  two  or  more  models  are
compatible  with  the evidence  … there  can  be
reason  to  prefer  one  of  them  and  reject  the
other”  (Wiese this collection,  p.  7).  This
strongly recalls Bayesian model comparison and
“inference to the best  explanation”,  if  not its
control-oriented  “inference  to  the  best  predic-
tion” form. 

One  important  clarification  is  needed
about Wiese’s interpretation of model compar-
ison, highlighting the critical roles of action and
counterfactual  processing.  Wiese  rightly  em-
phasizes  the important  insight  of  Popper and
Lakatos  that  hypotheses  are  never  tested  in

3 An important application of this idea is to the Bayesian brain itself
as a scientific hypothesis. A concern about the Bayesian brain hypo-
thesis is  that it can be insulated from falsification by postulating
convenient (typically unobservable) priors, much like adaptationist
explanations in evolutionary biology can be critiqued as “just so”
stories.  The  key  question,  not  answered  here,  is  whether  neural
mechanisms implement (approximations  to) Bayesian inference,  or
whether  Bayesian  concepts  merely  provide  a  useful  interpretative
framework. In the former case one would require the Bayesian brain
hypothesis to be progressive not degenerate.

isolation,  mandating  a  process  of  comparison
among competing models or hypotheses. How-
ever, he implies a sequential testing of each hy-
pothesis:  “balloons  being  launched  and  then
shot done, one by one” (see  Wiese this collec-
tion, p. 6). This is quite different from the inter-
pretation of model comparison pursued in my
target article,  where multiple  models are con-
sidered  in  parallel,  and  where  counterfactual
predictions are leveraged to select the action (or
experiment)  most  likely  to  disambiguate com-
peting models. In Bayesian terms this is reflec-
ted in a shift towards model comparison and av-
eraging  (FitzGerald et  al. 2014;  Rosa et  al.
2012), as compared to inference and learning on
a single model. Bongard and colleagues’ evolu-
tionary robotics example was selected precisely
because it illustrates this point so well (Bongard
et al. 2006). Here, repeated cycles of model se-
lection and refinement lead to the prescription
of novel actions that best disambiguate the cur-
rent best models (note the plural). Indeed, it is
the repeated refinement of disambiguatory ac-
tions  that  gives  Bongard’s  starfish  robot  its
compelling “motor babbling” appearance. To re-
iterate: different actions may be specified when
the objective is to disambiguate multiple models
in parallel, as compared to testing models one-
at-a-time.  In  the  setting  of  the  cybernetic
Bayesian  brain  this  example  is  important  for
two  reasons:  it  underlines  the  importance  of
counterfactual processing (to drive the selection
of  disambiguatory  actions)  and  it  emphasizes
that  predictive  modelling  can  be  seen  as  a
means of  control in  addition to discovery,  ex-
planation,  or  representation.  In  this  sense  it
doesn’t  matter  how  accurate  the  starfish  self
model is – what matters is whether it works. 

2.3 Science as control or science as 
discovery?

The distinction between explanation and control
returns  us  to  the  philosophy  of  science.  Put
simply, the views of Popper, Lakatos, and (less
so) Kuhn, are concerned with how science re-
veals truths about the world, and how falsifica-
tion of testable predictions participates in this
process.  Picking  up the threads of  abduction,
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control-oriented active inference, and “inference
to the best prediction”, we encounter the pos-
sibility  that  theories  of  scientific  discovery
might themselves appear differently when con-
sidered from the perspective of control. Historic-
ally, it is easy to see the narrative of science as
a struggle to gain increasing control over the en-
vironment (and over people), rather than a pro-
cess  guided  by the  lights  of  increasing  know-
ledge and understanding.4 A proper exploration
of this territory moves well beyond the present
scope (see e.g.,  Glazebrook 2013). In any case,
whether or not this perspective helps elucidate
scientific practice, it certainly suggests import-
ant  limits  in  how far  analogies  can  be  taken
between philosophies of scientific discovery and
the cybernetic Bayesian brain.

3 Perceptual presence and counterfactual
richness 

The second part of Wiese’s commentary picks
up on the issue of  perceptual presence, which
in my target article  was associated with the
“richness” of counterfactual sensorimotor pre-
dictions  (see  also  Seth 2014,  2015b).  Wiese
makes a number of connected points. First, he
rightly  notes  an  ambiguity  between  object-
hood and presence in perceptual phenomeno-
logy, as presented in my target article  (Seth
this collection) and in Seth (2014). Second, he
introduces the notion of  causal encapsulation
as a third phenomenological dimension, com-
plementing  counterfactual  richness  and  per-
spective dependence. He spends some time de-
veloping  examples  based  on  cognitive  phe-
nomenology  and  mental  action  to  illustrate
how  these  dimensions  might  relate.  Here,  I
will  focus  on  the  relationship  between  pres-
ence and objecthood from the perspective of
counterfactual predictive processing – or more
specifically  the  theory  of  “  Predictive  Pro-
cessing  of  SensoriMotor  Contingencies”
(PPSMC; Seth 2014, 2015b).5

4 The continually increasing pressure to justify research in terms of
“impact” – especially when seeking funding – highlights one way in
which an emphasis on control (rather than discovery) is realized in
scientific practice.

5 See also my response (Seth 2015b) to commentaries on (Seth 2014),
which focuses on this issue.

3.1 Presence and objecthood together

As Wiese notes, when visually perceiving a real
tomato  (figure  1A)  there  is  both  a  sense  of
presence (the subjective sense of reality of the
tomato) and of  objecthood (the perception that
a (real) object is the cause of sensations). Im-
portantly,  while  distinct,  these  properties  are
not  independent.  There  is  a  “world-revealing”
dimension  to  perceptual  presence  which  is
closely aligned with the experience of an extern-
ally-existing object: “How can it be true … that
we are perceptually aware, when we look at a
tomato,  of  the  parts  of  the  tomato  which,
strictly  speaking,  we do  not  perceive.  This  is
the puzzle of perceptual presence” (Noë 2006, p.
414).

Figure 1: A. An image of a tomato.  B. An image of a
clear blue sky.

How does this object-related world-reveal-
ing  presence  come  about?  In  predictive  pro-
cessing (and by extension PPSMC), objecthood
depends  on  predictive  models  encoding  hier-
archically  deep  invariances  that  accommodate
complex  nonlinear  mappings  from  (object-re-
lated, world-revealing) hidden causes to sensory
signals (Clark 2013; Hohwy 2013). There is a re-
ciprocal  dependency here  between hierarchical
depth and counterfactual  richness,  because (i)
hierarchically  deep  invariances  in  generative
models  enable  precise  predictions  about  rich
repertoires of counterfactual sensorimotor map-
pings, and (ii) counterfactual richness can scaf-
fold the acquisition of hierarchically deep invari-
ant predictions. One might even say that hier-
archically  deep  invariances  are  partly  consti-
tuted by (possibly latent) predictions of counter-
factually  rich  sensorimotor  mappings  (Seth
2015b).  These  dependencies  indicate  that  ob-
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jecthood  and  world-revealing  presence  depend
on  expectations about counterfactual  richness,
rather than counterfactual richness per se. Alto-
gether,  counterfactually-informed  active  infer-
ence  enables  the  extraction  and  encoding  of
hierarchically deep hidden causes of sensory sig-
nals.  In virtue of hierarchical depth, these in-
ferred causes will also be  perspective invariant,
in the sense that they will have been separated
from those causes that depend on on actions (or
other  properties)  of  the  perceiver  (see  Wiese
this collection, p. 11).  In short,  to the extent
that objecthood and perceptual presence go to-
gether,  so  do  hierarchical  depth  (encoding
world-revealing  invariances)  and  (expected)
counterfactual richness.

3.2 Presence and objecthood apart

So far so good, but it is evident that presence
and objecthood do not  always go together (Di
Paolo 2014; Froese 2014; Madary 2014), a phe-
nomenological fact which requires further ana-
lysis (Seth 2015b). Presence without objecthood
is exemplified in vision by the experience of a
uniform deep blue sky (Figure 1B), and is also
characteristic of non-visual modalities like olfac-
tion (Madary 2014). The visual impression of a
blue sky, or the tang of briny sea air, both seem
perceptually present  but  without eliciting any
specific  phenomenology  of  objecthood.  At  the
same time, the corresponding predictive models
are likely to be hierarchically shallow and coun-
terfactually poor:  there is  not much I can do
(besides closing my eyes or looking away) to al-
ter the sensory input evoking a blue-sky experi-
ence,  and  the  inferred  hidden  causes  are  un-
likely to lie  behind multiple  inferential  layers.
Hierarchical shallowness may explain the lack of
phenomenal  objecthood,  but  why  isn’t  there
also a lack of perceptual presence? 

Blue-sky-experiences  (and  olfactory
scenes)  actually  do lack  the  world-revealing
presence associated with objecthood. But they
do not appear phenomenally unreal in the sense
that  perceptual  afterimages  and  synaesthetic
concurrents  are  experienced  as  unreal.  In
PPSMC, phenomenal unreality can arise from
an inferential failure to separate hidden causes

in the world, from those that depend on actions
(or  other  properties)  of  the  perceiver  (Seth
2015b). This in turn emerges from violations of
counterfactual  predictions.  For  example,  con-
sider how saccadic eye movements engage coun-
terfactual  predictions.  Perceptual  afterimages
track  eye  movements,  violating  counterfactual
predictions associated with world-revealing hid-
den causes that rest on active inference. In con-
trast, counterfactual predictions associated with
blue skies are less amenable to disconfirmation
by eye movements, so (non-object-related) per-
ceptual presence remains.6 

Summarizing,  perceptual  presence,  as  an
explanatory  target,  can  be  refined  into  (i)  a
world-revealing presence associated with object-
hood and hierarchical depth, and (ii) a phenom-
enal unreality arising from a failure to inferen-
tially separate hidden causes in the world from
those associated with the perceiver.  Both rely
on counterfactual processing, and so both call
on  active  inference.  Perspective  invariance  is
also  implicated  in  objecthood  (through  hier-
archical  depth)  and  phenomenal  unreality
(through  isolating  worldy  causes),  suggesting
that  this  dimension  may not  be  as  separable
from  counterfactual  richness  as  proposed  by
Wiese (this collection,  p.  13).  But is  that  all
there is to presence?

3.3 Causal encapsulation and 
embodiment

Wiese distinguishes three dimensions to percep-
tual  presence:  counterfactual  richness  (vs.
poverty),  perspective  invariance  (vs.  depend-
ence),  and  causal  encapsulation  (vs.  integra-
tion). The third of these, causal encapsulation,
is perhaps the hardest to pin down. The idea as
I understand it, is  that a representation (pre-
dictive model) is causally encapsulated if it is
inferentially isolated from other hidden causes;
by contrast it is causally open or integrated if it
expresses a rich set of relations to other inferred

6 Phenomenal unreality on this story corresponds to a loss of “transpar-
ency” as described by (Metzinger 2003). For Metzinger, transparency is
lost – and phenomenal unrealness results – when the “construction pro-
cess” underlying perception becomes available for attentional processing.
This maps neatly on a failure to inferentially unmix world-related from
perceiver-related hidden causes – see Seth (2015b) for more on this.
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causes.  So,  a  predictive  model  underlying the
experience of a tomato may be causally integ-
rated with that underlying the experience of the
table on which it lies, and the hand (maybe my
hand), which is poised to reach out and pick it
up.  Here,  there  may  be  a  relation  between
causal encapsulation/integration and the infer-
ential unmixing of perceiver-related and world-
related  hidden  causes:  a  failure  to  separate
these  causes  would  presumably  prevent  rich
causal integration with other hidden causes in
the world. 

The concept of causal encapsulation high-
lights another interesting aspect of Wiese’s com-
mentary:  the  idea  that  counterfactual  predic-
tions may not always encode sensorimotor con-
tingencies: “it might be equally relevant to en-
code how sensory signals pertaining to the to-
mato would change if the wind were to blow …
or if the tomato were to fall down” (Wiese this
collection,  p.  11).  While  such  extra-personal
causal  contingencies  may  be  salient  in  many
cases, I see them as secondary to sensorimotor
body-related  counterfactual  predictions.  By
definition they do not involve active inference: I
have to wait for the wind to change direction
(though perhaps I might move to get a better
view). This means that many central features of
active inference discussed here – its relation to
predictive control, homeostasis, and counterfac-
tually-informed model disambiguation – do not
apply.

The body re-emerges here as central, this
time as a ground for the generation of coun-
terfactual predictions. Specifically, bodily con-
straints shape counterfactual predictions since
they place limits  on how actions can be de-
ployed  in  intervening  upon  the  (inferred)
causes  of  sensory  input.  This  suggests  that
changing action repertoires would alter experi-
ences of presence. Wiese raises out-of-body-ex-
periences and dream experiences as a relevant
context (this collection, p. 15), where subjects
sometimes identify their first-person-perspect-
ive, not with a body, but with an unextended
point in space. I agree with him that examin-
ing  world-revealing  presence  in  these  situ-
ations would be fascinating, if extremely diffi-
cult in practice. 

The body is of course not only a source of
counterfactual predictions,  but also  the target
of  counterfactually-informed  active  inference,
both for representation (exemplified by the rub-
ber-hand-illusion, as mentioned by Wiese) and
for control.7 As emphasized in the target article,
control-oriented active inference is  particularly
significant  for  interoception,  where  predictive
modelling  is  geared  towards  allostasis  and
homeostasis rather than accurate representation
(see also Seth 2013). Returning the focus to in-
teroceptive inference raises a host of intriguing
questions, which can only gestured at here. One
may  straightaway  wonder  how  counterfactual
aspects  of  interoceptive  inference  shape  the
“presence” of emotional and body-related exper-
iences. Is it possible to have an emotional ex-
perience  lacking  in  “affective  presence”  –  and
what is the phenomenological correlate of “ob-
jecthood”  for  interoceptive  experience?  Other
interesting questions are how precision weight-
ing  sets  the  balance  between  representation
versus control in active interoceptive inference,
and what it  means to isolate “wordly” causes
when both the means and the targets of active
inference are realized in the body. These are not
just  theoretical  questions:  advances  in  virtual
reality (Suzuki et al. 2013) and in methods for
measuring  interoceptive  signals  (Hallin &  Wu
1998) promise real empirical progress on these
issues.

4 Conclusions

This response has been shaped by Wiese’s per-
spicuous focus on the philosophy of science and
on the phenomenology of  perceptual presence.
My response to the first topic was to frame the
Bayesian brain in terms of  control-oriented ab-

7 Wiese, when discussing König’s FeelSpace project (Kaspar 2014), in-
terprets PPSMC as saying that increased practice with the FeelSpace
compass belt – and hence increased counterfactual richness– would
lead to “increased perceptual presence (for the belt, or the vibra-
tions, or the hip/waist, etc.)” (Wiese this collection, p. 17). I see
things differently. The counterfactual predictions, while mediated by
the belt, relate to hidden causes in the world (e.g., magnetic north).
In fact, PPSMC says that FeelSpace practice would lead to hierarch-
ically deep and counterfactually rich models of how “magnetic north”
impacts on belt vibrations and the like, leading to increased world-
revealing presence for these worldly causes but diminished perceptual
presence of the tactile stimulation itself. Still, the FeelSpace project
certainly provides a fertile empirical testbed for the ideas raised here.
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duction, where falsification is replaced by “infer-
ence to the best prediction” as a criterion for
progress.  I  also  reinforced  the  dependency
between active inference and counterfactual pro-
cessing, which underpins the important case of
disambiguatory  active  inference  in  Bayesian
model comparison. With respect to perceptual
presence  I  proposed  a  distinction  between
world-revealing  presence  and  phenomenal  un-
reality  (Seth 2015b).  World-revealing  presence
corresponds  to  objecthood  and  is  associated
with hierarchical depth, expected counterfactual
richness, and perspective invariance of percep-
tual  hypotheses.  Phenomenal  unreality  tran-
spires when perceptual inference fails to unmix
world-related from perceiver-related causes; this
corresponds to a loss of “phenomenal transpar-
ency” (Metzinger 2003) and depends on viola-
tion of counterfactual sensorimotor predictions.
Space  constraints  prevented  me  considering
Wiese’s discussion of the “presence” of cognitive
phenomenology, like abstract mathematical and
philosophical thinking, in these terms. There is
of course a rich literature in linking such phe-
nomena to  the  body (Lakoff &  Nunez 2001),
and hence perhaps to active inference where the
concept  of  a  “mental  action” becomes critical
(O’Brien &  Soteriou 2009).  Space  constraints
also  prevented  Wiese  from elaborating  on  in-
teroception, which I consider the most interest-
ing setting for control-oriented active inference,
in  virtue  of  the  cybernetics-inspired  emphasis
on homeostasis and allostasis. Interesting ques-
tions  emerge  here  about  how  counterfactual
processing plays into the phenomenology of in-
teroceptive experience.

Cognitive scientists have long argued for a
continuity  between  perception  and  action
(Dewey 1896). To close, I suggest thinking in-
stead of a continuum between epistemic and in-
strumental active inference. This is simply the
idea that active inference – a continuous process
involving both perception and action – can be
deployed with an emphasis on predictive control
(instrumental),  or  on  revealing  the  causes  of
sensory signals (epistemic). This process inter-
twines  interoception,  proprioception,  and  ex-
teroception, and autonomic and motoric action,
with the balance always delicately orchestrated

by  precision  optimisation  and  counterfactual
processing. Putting things this way provides a
new way to  link “life”  and “mind” (Godfrey-
Smith 1996) and may help reveal the biological
imperatives  underlying  perception,  emotion,
and selfhood.
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